
FarCry 4.0 CMS Developer Training Course

FarCry CMS

Version 2.1

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/2.5/au/ or send a letter to Creative Commons, 171 Second Street, Suite 300,

San Francisco, California, 94105, USA.

This work is copyrighted Daemon Pty Limited 2007, http://www.daemon.com.au/

1 Table of Contents
1 Table of Contents .. 2

2 Course Overview ... 4

2.1 Course Objectives ... 4

2.2 Course Prerequisites ... 4

2.3 Solar Safaris Website .. 4

3 FarCry Introduction ... 5

3.1 Programming Environment .. 5

3.2 Dynamic Authoring and Publishing ... 5

3.3 Content Object API (COAPI) .. 5

3.4 Tree Model .. 6

3.5 Services .. 6

3.6 Security Model .. 7

3.7 Presentation Logic ... 8

3.8 Container Management ... 9

3.9 Code BaseS .. 10

3.10 Extensibility ... 11

3.11 Third Party Plug-ins ... 12

3.12 Coding Standards .. 13

4 Administration Interface ... 14

4.1 Home Tab ... 14

4.2 Site Tab ... 16

4.3 Content Tab ... 18

4.4 Admin Tab ... 22

4.5 Security Tab .. 26

4.6 Reporting Tab .. 28

5 Webskins ... 32

5.1 MOLLIO ... 33

5.2 Home Page ... 35

5.3 Header .. 50

5.4 Footer ... 51

5.5 Standard Page ... 52

5.6 News page .. 60

5.7 Unit Review ... 67

6 Include Objects ... 68

6.1 Sitemap .. 68

6.2 Search .. 72

6.3 Contact Us .. 77

FarCry Developer Course Page 2

6.4 Unit Summary ... 86

7 Custom Types ... 87

7.1 Component Definition .. 88

7.2 Properties ... 89

7.3 Deployment ... 90

7.4 Adding new properties ... 91

7.5 Deleting properties .. 91

7.6 Edit destinations .. 92

7.7 Adding Custom Type to the Navigation Tree ... 92

7.8 Status ... 93

7.9 Versioning ... 94

7.10 Webskin .. 95

7.11 Child Links Rule ... 96

7.12 Dynamic Custom Type ... 98

7.13 Custom Admin ... 99

7.14 Webskins .. 102

7.15 Lab ... 103

7.16 Unit Review ... 106

8 Custom Rules .. 107

8.1 Rule Definition ... 107

8.2 Deploy .. 108

8.3 Teaser webskin .. 109

8.4 Execute Method ... 110

8.5 Lab .. 111

8.6 Unit Review ... 113

9 Advanced Topics ... 114

9.1 Caching ... 114

9.2 Security ... 116

9.3 Extending Core Types .. 119

9.4 Friendly URLs ... 122

10 ADDITIONAL ONLINE MATERIAL .. 124

10.1 FARCRY CMS OPEN SOURCE COMMUNITY ... 124

10.2 farcry-dev (public) .. 124

10.3 farcry-user (public) ... 124

10.4 farcry-beta (public) ... 124

10.5 BUG TRACKING ... 124

10.6 FARCRY WIKI ... 124

FarCry Developer Course Page 3

2 Course Overview

The FarCry Developers Course is designed to introduce the concepts of the FarCry Open Source Content
Management System and teach experienced ColdFusion developers how to install, develop, customise
and optimise a FarCry application.

The course is task-based, with students building their own FarCry application over the three-day course
period. Each unit will introduce a new concept, allow for students to follow a demonstration, and then be
walked through a lesson with their instructor and finally complete a task on their own to reinforce the
concept.

2.1 COURSE OBJECTIVES

By the end of the course, students should be able to:

 Install FarCry
 Use the FarCry Administration Interface
 Customise the look and feel of a FarCry Application
 Create custom Include objects
 Create custom administration functions
 Create custom types
 Create custom rules
 Optimise a FarCry application

2.2 COURSE PREREQUISITES

The prerequisites for this course are:

 Experience with HTML
 Experience with ColdFusion
 Experience with SQL

2.3 SOLAR SAFARIS WEBSITE

Throughout the 3-day course, students will be developing a site for a futuristic travel company called Solar
Safaris. On completion of the course this website will contain the following functionality:

 Destination Profiles
 Package Tour information
 Online Reservation
 Contact Form
 Search Form
 Site Map
 Latest News

FarCry Developer Course Page 4

3 FarCry Introduction

3.1 PROGRAMMING ENVIRONMENT

FarCry is built on top of the award winning Macromedia ColdFusion application server. ColdFusion is a
Sun Certified java application. ColdFusion script and mark-up compiles to java byte code and runs on the
majority of J2EE application servers. Although the underlying Java environment can be leveraged, FarCry
developers only need to understand the CFML language in order to develop within the application
framework.

3.2 DYNAMIC AUTHORING AND PUBLISHING

FarCry CMS follows a dynamic authoring and publishing model. Content is composited on the production
server and delivered to the visitor “on the fly”. FarCry does not publish static HTML files. Although FarCry
does have a series of sophisticated caching services that can be used to reduce load on the application
server as required.

Content authoring, staging and delivery can all be served from a single server instance. Alternatively
these functions can be distributed across multiple servers depending on the deployment. FarCry features
a virtual-staging mode that allows contributors to preview draft content in the context of the live, published
website.

The authoring environment is feature rich and a more comprehensive discussion of authoring and
publishing can be found in the FarCry Feature FAQ.

3.3 CONTENT OBJECT API (COAPI)

The FarCry CMS Content Object API (COAPI) forms the foundation for all content built and managed on
FarCry CMS. The COAPI is a database abstraction layer that uses an object-based programming model
for managing content. The site object model is a blueprint for the underlying data schema of any FarCry
application.

The COAPI provides a content storage model that enables developers to transparently store all forms of
content in a structured object storage system. The FarCry Content Object database is built on top of a
standard relational-database model, enabling customers to use almost any standard relational database
as the actual storage infrastructure. Support as of v4.0 includes MySQL, MS SQL Server, Oracle and
PostgreSQL.

Storing content in a core repository meets the key design goal of a clean separation of data or content
from presentation. This allows developers to easily repurpose content based on a given user’s browser, or
for delivery using other formats, such as XHTML, XML, RTF, e-mail, etc.

Using the COAPI shields developers from having to program or manipulate the database schema; instead
they use an elegant ColdFusion component-based API to interact with the Content Object database. This
API facilitates the deployment of new content types and the modification of existing types. In addition it
manages the evolution of the underlying relational database schema, including the modification of data
types.

Because the COAPI is extensible to support any form of back-end system, developers can simultaneously
access content stored in either the Content Object database or in their own external databases. The
FarCry content model supports storing most popular content types, including
files, images, Flash animations. Binary media such as files, images, and audio/video are stored in file-
system based media directories for fast retrieval and delivery. Developers can also extend the content
model to include content and data stored in any external databases.

FarCry Developer Course Page 5

3.3.1 Content Types
A site object model is comprised of a collection of Content Types. Each object type contains a set of
properties and methods. Properties are the elements of data associated with an object type. For instance,
a news object type might have title, teaser, body and publishdate properties. Methods are the activities
that surround the object, such as edit and display. The code that manages the activities is built using a
ColdFusion component. The properties of information or data can be stored and managed by FarCry,
using the Content Object database, or in any external RDBMS accessed via SQL or object middleware.

Core types are those content types that ship as part of the FarCry core libraries. They include Navigation,
HTML, Files, Images and many others. These by and large make up the default installation and
administration interfaces within FarCry CMS. FarCry developers are also able to take advantage of
“plugins” which are discrete modules projects can leverage, gaining access to additional functionality.
There are many public and freely available plugins, the most common being “farcrycms” which contains
News, Events, Links and Facts. A “vanilla” FarCry deployment is one that only uses the FarCry core types
and has no customisations. Custom types are content types that are specific to the FarCry application in
question. This term can also refer to core content types that have been extended and modified.

Content types are based on ColdFusion components. These specialised components extend (or inherit)
an abstract class (types.cfc) within the FarCry core library that provides the component with system
properties and methods needed to operate within the FarCry framework. This allows custom objects to
immediately leverage the plethora of services within the FarCry framework. Obviously specific properties
and methods can be overridden as required.

3.3.2 Content Objects
Content object is a term used to represent a specific instance of a content type. For example a News
content type would define the relevant properties and methods available – like a boiler template. The
content object would represent a specific instance of news content. Although all content objects of a
particular type will have different data associated with them, they will nevertheless share a common set of
property fields and methods.

3.4 NESTED TREE MODEL

Hierarchical information within the FarCry CMS environment is modelled in SQL using a variation of the
nested tree model approach (championed by Joe Celko, http://www.celko.com/). This provides a very fast
and powerful mechanism for managing tree related information. For example, the site information
hierarchy, the relationship of one fixed page to another and the categorisation service, the relationship of
one keyword to another, are managed within the FarCry tree model.

The tree modelling approach allows for all kinds of sophisticated content management including the ability
to easily rearrange positional information and rapidly determine essential metadata such as breadcrumbs,
ancestry, descendents and so on. Developers don’t need to understand the tree model to leverage its
power – everything is exposed through a simple component API. Common tasks like generating
navigation and positional information for the presentation layer are simplified further still via a library of
custom tags.

3.5 SERVICES

FarCry, as you might expect, contains a library of services for handling content management functions.
These include workflow, versioning, Verity free text search integration and so on. The FarCry
administration area or webtop is effectively a sample application that leverages these services to provide
the visible out of the box FarCry solution for the default content types. These services can also be
leveraged to support custom content types, publishing rules and other customisations. Effectively
anything that is possible in the default administration area should be accessible as a service through the
component API.

Components are generally self-documenting, and it’s worth using the ColdFusion component browser to
review the functions available by default in the application framework. Many integration examples are
available for review from the FarCry developer community.

FarCry Developer Course Page 6

3.5.1 Versioning and archiving
By default only HTML objects are versioned and archived in the core framework. These services can be
leveraged for any content type within the system.

3.5.2 Verity free text search services
FarCry leverages the built-in Verity K2 engine shipped on the ColdFusion application server to provide
free-text searching across all content types. The individual content type properties you require searching
for can be configured at will through the web based administration. FarCry also provides options for
searching external file libraries.

3.5.3 Scheduled tasks
FarCry has its own task management subsystem that uses the underlying ColdFusion cron service. This
is typically used for scheduling maintenance events, periodic reporting and the like.

3.5.4 Categorisation
There is a central categorisation service that can be applied to any content object. The categorisation
service is exposed by default to many of the core content types. Categorisation is based on a keyword
tree that can be edited by appropriately privileged users. Content can be selected for by specific keyword
allocation or by keyword tree branch.

3.5.5 Export
FarCry ships with an export service that allows the content instances of any content type registered in the
system to be exported according to a developer defined template. By default we incorporate a basic XML
template and a more specialised RSS template for content syndication. Developers can of course extend
this service by providing additional templates as required.

3.5.6 Reporting
FarCry has an observation architecture that records the detail of every object access. Detailed web
statistics reports are available for all kinds of activity throughout the website. FarCry ships with a standard
set of reports that can be supplemented as required by processing the captured data.

FarCry applications generate a standard web log (from the web server itself) for third-party logging tools to
process.

3.6 SECURITY MODEL

FarCry incorporates a very sophisticated role based security model. FarCry authenticates against a user
directory expecting a true/false on the login credentials and group membership for the user. User groups
are then mapped to internal policies or roles, thereby determining the privileges of the user in the system.

3.6.1 User directories
FarCry supports multiple user directories including ActiveDirectory, NTDomain, LDAP and JDBC/ODBC
directories. Significantly FarCry can manage users in multiple and mixed directories at once in a single
application. Furthermore, user directories can be shared across multiple FarCry application instances.

3.6.2 Policy Groups or Roles
FarCry policy groups are effectively a collection of permissions within the system. FarCry has a library of
permissions covering all aspects of the framework. Policy groups are mapped to specific user groups
within the associated user directories configured for the application.

Policy groups are completely customisable. FarCry ships with five default policy groups. These can be
modified, substituted or added to as required. “Anonymous” is a special role identified to the system as
effectively the absence of any group information – its very handy to be able to apply permissions for users
who have not been authenticated.

FarCry Developer Course Page 7

Developers can readily add additional permissions to cater for customisations they may need to make. In
addition, developers can use permissions to provide visibility on tabs and menu items within the web
based administration as well as access to specific functions or actions.

3.7 PRESENTATION LOGIC

FarCry isolates the presentation layer into a special
area of the code called the “webskin”. We’ve done
this to provide the most simplistic offering possible for
template designers to composite presentation
templates within the system. As such, templates can
be developed by anyone confident with HTML.

Literally any sort of presentation layer can be
developed. By way of example only, FarCry installs
with Mollio (http://www.mollio.org/), a set of XHTML
compliant templates developed by Daemon.

Templates are ColdFusion pages. As such they can
incorporate any functionality available to the FarCry
component API or the underlying ColdFusion server
itself. Consequently a template in the FarCry sense
can do all sorts of interesting things. The template
code has access to the properties of the object
instance, its positional information (including an
understanding of its parents, children, siblings and
related links) environmental variables (including any
session profile for the current user), and all the
underlying FarCry services. This essentially allows for
an extremely rich environment for the development of
the presentation layer. For example, a page
breadcrumb can be dynamically built by asking the
FarCry API where in the site the currently viewed
content sits.

Each content type, for example a web page or news
article can have any number of templates associated with them. For instance, a web page content type
might have templates for “Full Page Display”, “Teaser Display”, and “Text Only Display”. A single content
item could be rendered in several different ways, just by changing the processing template.

FarCry has a template caching sub-system that allows template designers to cache different regions of the
template for any specified time. For example, one might cache the primary navigation for 6 hours but a
random testimonial for only 5 minutes. Any combination of caching regions and periods are possible.

FarCry Developer Course Page 8

3.7.2 CSS support
Template developers can reference their own fixed style sheets in the presentation layer.

In addition, FarCry has a specific content type for managing external style sheets. This can be referenced
in the template to provide a specific set of cascading style sheets for different regions of the web site.
Furthermore, these style sheets can be managed independently of the template engine by non-technical
users through the web based administration area.

3.8 CONTAINER MANAGEMENT

FarCry has a special sub-system for managing dynamic content within the presentation layer. Specific
regions of any template can be designated as a “container” and have dynamic content scheduled into
them by non-technical authors. This behaviour in other systems is sometimes called, portlets, page
behaviours, pods or a variety of other names.

The concept is important to understand because it represents some of the most powerful aspects of the
FarCry framework. Containers are regions of a page where some sort of programmatic behaviour can be
placed. For example, a list of the latest news items, an event calendar, content syndicated via XML from
another website, a randomly picked fact and so on. These programmatic behaviours in FarCry are called
Publishing Rules.

3.8.1 Containers
Containers are placed in a template with a simple custom tag. FarCry takes care of the rest of the
required machinery. Based on the name given to the container, they can be unique to a specific page,
shared across a specific section of the website or shared globally throughout the website. They are
populated by contributors selecting from a predefined set of publishing rules.

3.8.2 Publishing Rules
Publishing rules are a special content type that capture some parameters in edit mode from a contributor
and then at run-time, in execution mode, dynamically display content based on some predefined
behaviour. FarCry ships with a library of publishing rules for contributors to choose from. Developers can
customise these rules or build their own.

For example, the news rule allows a contributor to select a type of display, categories for filtering and the
number of news items. When a visitor accesses the page with the rule, the predefined behaviours goes
off and grabs the very latest news items matching the specified categorisation and displays them with the
right template. When even new news content is added to the system, this rule will automatically update
the page without any further intervention.

FarCry Developer Course Page 9

For example, the child links rule will display teasers from all a pages underlying child pages. This sort of
behaviour is used to populate a summary or landing page dynamically based on the underlying pages of
that section of the website. Add, update or remove a page and the landing page is automatically updated.

For example, the “random fact rule” will randomly pick and display a predefined number of fact content
objects. This rule would update and refresh its content every page request. This is often used as a great
way to show off testimonials or other snippets of information.

3.9 FRIENDLY URLS

The FriendlyURL servlet is used to generate beautiful user and search engine friendly URLs for any
FarCry application. FriendlyURL now ships as part of the standard FarCry distribution but is turned off by
default. FriendlyURL is very easy to configure and is highly recommended.

3.10 CODE BASES

One of FarCry’s distinct architectural advantages is the separation of core CMS services from unique
project-by-project customisations. We work exceptionally hard to make the core libraries configurable by
extension and not be replacement. You should not have to make modifications to the core library as part of
normal development. This significantly minimises the impact of core changes on existing deployments.
Furthermore, it ensures that development teams can continue to benefit from the fruits of ongoing open
source development in the core code whilst providing uniquely customised deployments.

3.10.1 Core
“core” is the primary code base. It holds all the content management services and methods. It effectively
provides the application framework and the presentation layer for the FarCry Administration area. It has
been specifically isolated as the core, managed code base -- you should never have to modify this code
base except to patch bugs or extend core functionality. All project specific customisations should be done
elsewhere!

The core library contains all the generic services that make up a “vanilla” FarCry deployment. It is worth
noting that the sample application that comes as part of the installation only represents a small sub-set of
functionality available overall.

The Component API is well documented, and you can review this online at:
http://www.farcrycore.org/cfcdoc/

3.10.2 FarCry Project
Every FarCry instance has its own unique project directory. This directory holds the site-specific
configuration files, the webskin (presentation layer) and anything else that makes a project unique.

On installation, new applications contain skeleton templates from “Mollio”. You start with this very basic
application structure and then modify it to your hearts content. This repository contains basic templates
such that your project is operational on deployment. This basic structure includes configuration files,
directory structures for customisation and a presentation layer for the core CMS elements.

3.10.3 Mollio
This code base is most often used for installation of new projects. The installation routine generates a
new application (including populating a fresh database) using the base templates stored in Mollio.
Although Mollio can be used as a standalone application, it really should be treated as a template for
building upon.

FarCry Developer Course Page 10

3.10.4 FourQ
“fourq” is the content object API (COAPI) used by FarCry as a database abstraction layer. It is this
abstraction layer that makes the deployment and evolution of content types within the framework so
flexible. fourQ is an interesting use of CFC concepts and well worth a look -- even if it’s just to spark your
own database abstraction ideas. “core” provides a web-based front end to fourq actions to make life easy
for FarCry developers.

3.11 EXTENSIBILITY

FarCry CMS is more than a content management solution. FarCry is a web application framework that is
well suited to the construction of web applications, especially those dealing with content. The framework
provides a range of integration and customisation options.

3.11.1 Templates & Webskin
Developers can implement any look and feel through the FarCry presentation engine. Templates are
simplified further by being self-registering, and supplemented by a custom tag library for truly painless
deployment. Template construction only requires good HTML skills and a passing knowledge of
ColdFusion.

3.11.2 Included Objects
The “include” content type allows developers to run any block of ColdFusion code within the template
engine of FarCry. For example, the sitemap and search pages within the sample applications are both
Include objects.

3.11.3 Extending the webtop
The FarCry web-based administration is customisable. Developers can supplement the existing
functionality with their own administration interfaces as they require. The security model, audit and other
services can all be used to extend the administration area.

3.11.4 Custom Content Types
Completely new and unique content types can be built and deployed within FarCry, leveraging the same
core services available to core types.

3.11.5 Custom Publishing Rules
Developers can build publishing rules to supplement the existing library of publishing rules within the
system.

FarCry Developer Course Page 11

3.12 THIRD PARTY PLUG-INS

FarCry leverages many third-party code libraries, to provide a best of breed solution. These plug-ins are
optional but recommended. FarCry provides out-of-the-box integration for following solutions and is
adding more as the community requires. These libraries are isolated from the primary code base as they
may be distributed under alternative licenses and/or their source code is managed by a separate project.
The FarCry milestone builds released by Daemon provide commercial support for the integration specific
versions of these code libraries.

3.12.1 Rich Text Editor Support
v4.0 FormTools provides support for tinyMCE and is considered the editor of choice, as such it is the only
editor shipped with official FarCry installation packages. Of course developers are still able to plugin a
different editor if they so desire.

3.12.2 Javascript Libraries
FarCry uses a variety of JavaScript libraries for client side validation in forms and wizards, and other UI
effects. FarCry distribution currently includes Prototype, mootools, YUI, extJS and qForms libraries.

3.12.3 geoLocator
geoLocator is a Java/ColdFusion library used to lookup country code and language from a visitor’s IP
address. It uses a local copy of the WHOIS database to perform fast, accurate lookups of country codes.
geoLocator is useful for log analysis, internationalisation, geolocation, and more.

geoLocator is maintained by Paul Hastings (http://sourceforge.net/projects/javainetlocator/).

FarCry Developer Course Page 12

3.13 CODING STANDARDS

The following variable naming conventions are used within FarCry:

Variable Type Prefix Example
Structure st stObj
Array a aObjects
List l lObjects
Integer i iAmount
Boolean b bFound
Object o oTree

As of v4.0 variables, filenames and directories are preferred to be in lowerCamelCase. Although
ColdFusion (CFML) is not a case sensitive language, FarCry is available on any platform that ColdFusion
can run on including the *nix operating systems where case sensitivity with filenames and directories is
enforced.

For this reason a concerted effort is being made to standardise naming conventions. The
lowerCamelCase states that words are joined without spaces and the first letter is capitalised (with the
exception of the first word which is all lower case).

For example:

displayPageStandard.cfm
types.cfc

The use of <cfsetting enablecfoutputonly=”true”> is highly encouraged to reduce “white space” in the
resulting HTML source code. Only code that is to be generated as HTML should be inside <cfoutput> tags.

As the use of these white space techniques can make the code quite complex this course (for the sake of
simplicity) will not go to great lengths to reduce white space, but it should be noted that this is regarded as
a best practice and should be implemented in a real world production situation.

FarCry Developer Course Page 13

4 The “webtop”: Administration Interface

To login to the FarCry Administration Interface for the first time use the following details:

Username: farcry
Password: farcry

4.1 HOME TAB

The Home Tab used as an overview/reporting page for your site. Here you will find information like your
profile details, objects you have locked or waiting approval, recently added pages and a number of graphs
to give you an overview of site.

4.1.1 Your Profile
Displays your currently profile details including name, email and locale. Each user in FarCry has an
associated profile. An email address is required if you wish to make use of the workflow reporting system
within FarCry, which notifies you when your object has changed status, or someone is requesting your
approval for one of their objects.

4.1.2 Edit Profile
Editing your profile allows you to update your personal details including name and email address. It also
allows to you to choose if you want to receive email notifications and what locale you belong to. The
default locale is en_AU (Australian English). Changing this to will affect the way dates are formatted, text
direction etc within the FarCry admin system, and if a translation file is present it will also present the
admin system in your local language.

4.1.3 Change Password
This allows you to change your login password. Passwords should be changed on a regular basis for
security reasons.

FarCry Developer Course Page 14

4.1.4 Objects Waiting Your Approval/Draft/Locked
This will show as a table in the centre column of the page. Listed will be objects that are awaiting your
approval. Each item is linked to the object so to allow quick viewing/approval.

4.1.5 Objects You Have Locked
This will also show as a table in the centre column of the page if you have any objects that are locked and
preventing other users from editing. Objects are locked automatically when you begin the edit process and
if for some reason you leave the edit process without saving the object will remain locked. You can unlock
each item by simply clicking the “[unlock]” link in the table.

4.1.6 Customised Overview
The entire webtop overview for any content type can be replaced and customised.

FarCry Developer Course Page 15

4.2 SITE TAB

The site tab is where you manage the structure of your site and all navigational content.

4.2.1 Home
The Home tree structure is the main navigational structure for your site, from your home page down. Use
this tree to:

 add/edit pages
 change hierarchy structure
 set security permissions for content
 approve/request approval/send back to draft
 view page/branch statistics
 send to trash/delete pages
 view dump of page contents
 preview page

4.2.2 Utility
Offers the same functionality as the Home tree but is generally used for content that does not fit into the
main site hierarchy, eg search pages, utility menus etc.

4.2.3 Trash
All objects that have been “Sent to Trash” are stored here. Objects can be moved back into the main tree
or deleted permanently from the system.

4.2.4 Quick Zoom
A drop down list of navigation points that when selected quickly zooms to the selected point in the tree.
Values are added to the drop down list if they have a nav alias set.

4.2.5 Refresh
Clicking the refresh icons refreshes the tree without reloading the other frames.

FarCry Developer Course Page 16

4.2.6 Prune and graft, copy and paste
Navigation nodes can be moved, copied or pasted onto other navigation folders in the tree to rearrange
the site hierarchy.

4.2.7 Overview
The overview screen show basic object details along with a number of options depending on object type,
status and security permissions. These options include:

 Edit
 Approve/Request Approval/Send back to draft
 Create draft version
 Add comment
 View comments
 Delete
 Send to trash
 Preview
 Dump
 Create new object (if object being viewed is a Navigation Node)

4.2.8 Edit
The edit tab calls the edit method for the object, automatically locks the object and presents the user with
the edit form, usually in the form of a one page form or a multi step form called a PLP (Process Logic
Path). Completing the edit form unlocks the object, updates its contents and returns you to the overview
screen.

4.2.9 Archive
The archive screen lists all previous versions of the object. If an object is approved you can create a draft
version of the object whilst keeping the live version, allowing you to make changes without effecting the
live site. When the changes are complete you can send the draft version live, replacing the current live
version with the draft version. The existing live version gets archived and will be listed under the archive
tab. You can roll back to archived versions at any time.

4.2.10 Audit
The audit tab lists all activity against the object. Each audit log shows the date of the activity, what the
activity was eg create, update etc, the location it was edited from (IP address), any notes and the user who
performed the change.

4.2.11 Stats
The stats tab shows a number of statistical graphs based on the number of views the object has had.
There are three graphs:

 Views per hour of the last 3 days
 Views per day of the last 4 weeks
 Views per day between a start and end date (user entered)

If the object being viewed is a navigation node, then the statistics shown will be generated from all objects
under that node (called a navigation branch).

4.2.12 Properties
The properties tab is primarily for developers and shows a dump of actual values stored in the database
for that object.

FarCry Developer Course Page 17

4.3 CONTENT TAB

The content tab is primarily used for adding content that does not sit within the site tree hierarchy. This
could include things like news items, facts, links and events. Typically this kind of information is listed on a
page via a container and publishing rule and may be filtered on publish dates and categories. For
example, only show news items that are currently published and are in a category called “New
Destinations”. This is known as dynamic content. Different objects may appear on the page without any
changes to code or the page itself.

The content tab is split into four sub sections:

4.3.1 Media Library Content
The Media Library allows content editors to add and edit images, files and flash movies within their project
from a centralised location. Images for example would leverage the Image content type

The Media Library is available to content editors and is an easy choice for accessing a central repository
for your project assets.

4.3.2 Site Tree Content
This area provides a summary of all “HTML” pages (dmHTML) and “Included” content objects. If you have
a large site this can be a handy way to find a page you need to edit, or to give you an indication of the
number of these content types in your project.

4.4 CONTENT UTILITIES

4.4.1 RSS Feeds
FarCry has a utility to generate RSS feeds from any object type. Multiple RSS feeds are permitted and
each feed is generated via a simple edit form that includes standard RSS properties. Users can select
which object type to use, how many objects to be listed and filter by category if needed.

FarCry Developer Course Page 18

The RSS feed is generated when the user clicks on the “Preview” button. An xml file will be generated
(using the name given in edit form) and saved in the <applicationName>/www/xml folder.

The validate button is used to validate the RSS feed against standards. This function is only available if
the resulting xml file is available on the Internet, i.e. not when using localhost.

4.4.2 Export
The Export utility generates an xml file of all the content in the system for the selected content type and
sends it via email to the address entered.

4.4.3 Manage Keywords
Categorisation allows users to administer the site’s Category tree. A category tree is defined so that site
content can be grouped into similar topics. Eg you may have a page in your site called “Destinations”. On
this page you want to list all of your destinations but also to show news related to destinations and a
random fact on one of your destinations listed. To do this you would create a category item called
“Destinations” and then assign the appropriate news and fact items with this category. Finally on your
Destinations page you would use the News Rule filtered by the Destinations category and the similarly for
the Random Fact Rule to generate only Destination related information.

The category tree can be hierarchical and categories can be moved within the hierarchy. Categories can
also have an alias assigned, allowing for developers to easily reference a category’s objected via the
application.catid structure.

4.4.4 Shared Containers
Shared Containers allow a content editor to re-user a publishing rule across multiple containers, so that if
a change is made to one container/publishing rule that change flows through to all ‘shared containers’
automatically.

4.4.5 Quick Site Builder
This feature is a handy utility for quickly generating a navigation structure within your project and is often
used during the initial site development stage. Users are able to choose:

 where in the tree the structure should be built
 what status the items should be given
 an option to create dmHTML items with the same title beneath each navigation node and the

option to choose which display template to use for the dmHTML items
 an option to create nav Aliases for navigation nodes to a specified level down
 a text are box where users enter the new navigation structure with each line representing a new

item and using – as a level token to indicate the item should be at a lower level.

Eg

Item 1
-Item 1.2
--Item 1.2.1
-Item 1.3
Item 2
-Item 2.1
--Item 2.2
Item 3

4.4.6 Category Tree Quick Builder
The Category Tree Quick Builder is a similar utility to the Quick Site Builder but used for the category tree.

4.4.7 Bulk Image Upload
This feature allows users to quickly insert a number of images into the site structure. Users are able to:

FarCry Developer Course Page 19

 Choose where in the site the images should be loaded to (defaults to the global image library)
 Allows a user to upload a zip file containing all the images

4.4.8 Bulk File Upload
A similar utility to the “Bulk Image Upload” but for file objects.

4.4.9 Archive Utilities
An overview of all archived content within the current project.

4.5 FARCRY CMS PLUGIN

4.5.1 News
Clicking the “News” link will show a listing of News (dmNews) objects coming from the “farcrycms” plugin.
The dashboard overview page is common to Dynamic Content types in FarCry and is called “Object
Admin”. Users may add/edit/delete content objects and are provided a set of tools to search for a
particular object to perform an action on.

These filter tools limit the results shown by selectively ‘searching’ on a field type like the object title, or
body content. Users are also able to order the results by any record in either descending or ascending
order on the title, publish date or date last updated.

The results are shown by default with the following fields:

 Select (a checkbox used to select the object and perform a function like Delete)
 Status (an indication of the status for that particular content object)
 Action (a dropdown box to perform certain actions for a content object)

o Overview (a link to overview page for that content object)
o Edit (a link to edit the object. This link is only active if the object is unlocked and the user

has permission to edit the object)
o View (a link to preview the object in a new window)
o Request Approval
o Approval

 Title (the object’s title as entered by a content editor)
 News Category (only displays if a news item has been categorised)
 Publish Date (when the news item was published)

FarCry Developer Course Page 20

 Last Updated (shows the date the object was last updated)

Functions users are able to perform from Object Admin:

 Add
 Delete
 Request Approval
 Approve
 Send to Draft
 Properties
 Dump

These buttons are displayed only if the user has appropriate security permissions.

4.5.2 Events
All the functionality as described for News, but lists dmEvent objects.

4.5.3 Facts
All the functionality as described for News, but lists dmFact objects

4.5.4 Links
All the functionality as described for News, but lists dmLink objects.

FarCry Developer Course Page 21

4.6 ADMIN TAB

The admin tab is used to perform various administration tasks from modifying a sites configuration,
clearing cached objects to deploying/updating system types and rules. The Admin tab is by default only
available to Site Administrators.

4.6.1 Config Files
This screen lists all configuration files within the system, both default and custom defined. Clicking a config
file will take you to the edit method for that config, and allows you to update the various elements of the
config. Clicking the “Update Config” button saves the configuration to the database and updates the values
in the application scope. All config values are accessible via the application.config.[configName] structure
eg application.config.general.siteTitle by will return “FarCry” after a new install. The default configs
installed by FarCry are:

 FU Settings (Friendly URL settings including domains and URL patter)
 General (general elements for the site include title, admin email and which text editor to use)
 overviewTree (configurable html strings for insert statements from the tree, eg insert Image)
 plugins (define which FarCry plug-ins the site uses eg Friendly URLs)

4.6.2 Custom Config
Lists all custom config files and has the option to deploy the config if not already deployed, otherwise the
option to re-deploy (restoring to its default values) is displayed.

4.6.3 Dump Config
Primarily used by developers who need to quickly see the contents of all config files. Each config is
presented as a separate cfDump structure.

4.6.4 Dump Custom Admin XML
Primarily used by developers who need to quickly see the xml structure of the Custom Admin definition
file.

4.6.5 Scope Dump
A Flash utility that allows users to dump the contents of four ColdFusion scopes:

FarCry Developer Course Page 22

 Application
 Server
 Request
 Session

4.6.6 Cache Summary
The Cache Summary screen displays a listing of all cache blocks within the system. Caching is used to
enhance performance of a website and each cache is as assigned to a cache block to help with the
management of caching.

Each cache block is displayed with the following information:

 The name of the cache block which is linked through to a cache detail screen which lists each
individual cache within that block

 Number of caches (displays the number of caches belonging to the cache block)
 Expired caches (displays the number of caches within the cache block that have passed their

expiry date)
 Clean (a checkbox that when selected and the clean function run will remove all the expired

caches within the block)
 Flush (a checkbox that when selected and the flush function is run will remove all caches from

within the block)

The cache details screen presents the following information:

 The name of the individual cache. When clicked the contents of the cache will be displayed in a
new window

 Timeout Period (how long the cache is set to last for (days:hours:minutes:seconds)
 Will Expire (the date/time at which the cache is due to expire)
 Flush (a checkbox that when selected and the flush function is run will remove selected cache)

4.6.7 Auto Cache
The Auto Cache functional is way to automatically cache all pages within your site. A cache is only created
when a page is first viewed so what this function does Is start at your home page and then progressing
down the tree views each page in turn, therefore creating caches as it goes. When the utility is finished
you will see all your cache blocks and individual caches in the Cache Summary screen.

4.6.8 Scheduled Tasks
The Scheduled Tasks screen is a way to generate ColdFusion scheduled task from within FarCry. Users
can choose from a number of default scheduled tasks or can create their own tasks by saving a file under
the <applicationName>/system/dmCron folder.

The default scheduled tasks are:

 Empty Trash (deletes all items under the Trash node)
 Statistics Overview Report (emails the Statistics overview report to a specified email address)
 Unlock Objects (unlocks any locked items)
 Verity Update (updates all verity collections)
 XML Feed Update (recompiles all RSS Feeds)

4.6.9 Rebuild Friendly URLs
If the Friendly URL plug-in has been set up, users can reset all Friendly URLs using this tool. The function
first deletes all existing Friendly URLs and then goes through the navigation tree structure, starting from
the home node and working down, creating a Friendly URL for each node.

FarCry Developer Course Page 23

4.6.10 Manage Friendly URLs
Clicking the Manage Friendly URLs link produces a list of all Friendly URLs defined in the system. The list
can be filtered by either the alias name or an objectid. Users can delete individual Friendly URLs by
selecting the URL’s checkbox and clicking on the “Delete” button at the bottom of the screen.

4.7 FARCRY VERITY PLUGIN

4.7.1 Manage Collections
The Manage Collections link produces a list of verity collections in the site. Each collection has the
following information/links:

 Collection Name
 Last Updated date
 Update link to update the collection’s index
 Optimise link to optimise the collection’s index
 Delete to remove the collection from the server

4.7.2 Build/Update All Collections
This utility loops through the verity config file and produces a collection for each object type that has been
selected for indexing. If the collection already exists the function will update the existing collection.

4.7.3 Optimise All Collections
This utility optimises all verity collections within the site.

4.7.4 Verity Config
Displays the verity configuration file (same screen as config)

4.8 COAPI ADMIN

4.8.1 Type Classes
The Type Classes screen is a very powerful utility used by System Administrators to perform the following
tasks without the need to edit the database manually:

 Deploy new types to the system (creates the database table and updates the application scope)
 Deploys new properties to an existing type (adds new field to the database table and updates the

application scope)
 Renames existing properties (renames the field in the database and updates the application

scope)
 Deletes old properties (removes the field from the database)
 Changes property types eg from string to text (changes the field type in the database and

updates the application scope)

4.8.2 Rule Classes
Similar to the Types Classes screen but Rules based.

FarCry Developer Course Page 24

4.8.3 COAPI Metadata
Dumps the application.types and application.rules structures. Displays the following information:

 Type/Rule general information such as name, hint
 All the type/rule methods and arguments
 All the type/rule properties, including name, type and required information

4.8.4 COAPI Schema
A graphical layout of all database tables in the system and their field information (Internet Explorer only)

4.8.5 Orphaned Nodes
A utility that searches for objects within the nested tree structure that have no parent objects. If objects are
found it provides the user with an option to re-attach the objects to the tree in a specified location.

4.8.6 Fix Tree Levels
This utility is used to ensure that the nested tree structure is valid and all tree values including left, right
and level are accurate.

4.8.7 Rebuild Tree
Rebuild Tree searches the nested tree for objects that have references to objects that no longer exist. If
objects are found they can be removed from the database.

FarCry Developer Course Page 25

4.9 SECURITY TAB

The Security area is used by Site Administrators to perform various security related tasks such as
creating/updating users, creating new policy groups, mapping policy groups to user groups, add new
permissions, assigning permissions to policy groups and to view the permissions applied to the site
navigation tree.

The FarCry security system works with:

 At least one User Directory.
 A User Directory contains Users and User Groups
 Users belong to User Groups
 User Groups are mapped to Policy Groups
 Permissions are set against Policy Groups.

This allows for multiple User Directories within the one FarCry site eg the FarCry default user system and
an active directory setup. Each User Directory can have their own set of User Groups but they all map to
the one set of Policy Groups within FarCry, meaning that permissions only have to be set at one level.

There are two types of permission within FarCry by default, Policy Group and Navigation. Policy Group
permissions are static permissions that are mainly used in the administration interface. Eg whether a user
can view the Admin tab or can work with dynamic content. Navigation permissions on the other hand are
directly related to the navigation tree. The navigation tree has permissions such as view/edit/approve.
Navigation nodes inherit permissions from their parent node unless otherwise set.

4.9.1 Test Security Setup
Performs a test to ensure the correct security database tables are in place.

4.9.2 Search for User
This page is used by administrators to search for existing FarCry users. Once a user has been found their
details can be updated:

 change password
 change user status (active/not active)
 update user notes
 manage the user’s groups (assign to new groups or remove existing assignments)
 delete the user

4.9.3 Create a User
An administrator can create a new user using this screen by entering a user login and user password.
Once created the same options are available as for search for user.

FarCry Developer Course Page 26

4.9.4 Search for Group
A search utility for FarCry Groups. Once found, groups can either be updated or deleted from the system.

4.9.5 Create Group
Creates a new User Group with FarCry.

4.9.6 Test Policy Setup
A utility that test that the needed Policy Store tables are in the database.

4.9.7 Policy Groups
A listing of all FarCry Policy Groups and their descriptions.

4.9.8 Policy Group Permissions
This screen is where permissions are set for each Policy Group within the system. There is a drop down
box at the top of the screen with all the Policy Groups. Each permission is listed and its current state for
the selected Policy Group shown (either Yes/No). Permissions states can be changed and then saved by
clicking the “Update” button.

4.9.9 Create Policy Group
A form that allows administrators to add new Policy Groups to the system.

4.9.10 Copy a Policy Group
Administrators can use this tool to copy an existing Policy Group, including all its permission values, into a
new Policy Group.

4.9.11 Show Policy Group Mappings
A listing of relationships between FarCry Policy Groups and User Groups.

4.9.12 Map Policy Group
A utility for administrators to map a User Group from a list of User Directories to a FarCry Policy Group.

4.9.13 Permissions
A listing of permissions based on permission type (dmNavigation or PolicyGroup). Clicking the permission
name will display an edit form where the permission name and notes can be updated or the permission
deleted from the system.

4.9.14 Create Permission
A form that allows administrators to create new permissions. Values required are permission name and
permission type.

4.9.15 Permissions Map
Displays the navigation structure with all places where a permission setting has been set manually (i.e. not
inherited) linked to the edit navigation node permissions screen where permissions can be modified.

FarCry Developer Course Page 27

4.10 REPORTING TAB

The reporting section within FarCry presents a wide range of statistics on site views, sessions and
searches. An entry is logged into the stats system each time a user requests a page with the following
information stored:

 Pageid (ObjectId of the page viewed)
 Navid (ObjectId of the navigation parent of the page viewed)
 UserId (if the user is logged in then the FarCry username is stored, otherwise “anonymous”)
 RemoteIp (the IP address where the user is browsing from)
 logDateTime (the time and date the page was viewed)
 sessionId (the unique sessionid of the user)
 browser (the type of browser the user working with)
 referrer (the page referrer)
 locale (the user’s locale code)
 OS (the user’s operating system type)

FarCry Developer Course Page 28

4.10.1 Overview Report
Provides a quick statistical overview in the time frame selected. Users can choose from the following time
periods:

 Today
 Last Week
 Last Month
 Last Quarter
 Last Year

The total number of user sessions during the specified period is shown at the top of the screen and then
the top 10 results of the following categories are shown:

 Pages
 Locales
 Browsers
 Operating Systems
 Referrers
 Searches

4.10.2 View Summary
The view summary allows users to view the most popular objects in a defined period. The search can be
filtered by:

 object type (defaults to all types)
 date (today, last week, last month, last quarter, last year, all)
 Rows (number of results returned (default to 20)

Click the “More Details” link produces the standard three-graph representation:

 Views per hour of the last 3 days
 Views per day of the last 4 weeks
 Views per day between a start and end date (user entered)

4.10.3 Referrer Summary
Lists the most popular referrers with the option to filter by date, number of rows returned and remove
internal site references.

4.10.4 Locale Summary
Lists the most popular locales by country name and language with the option to filter by date and number
of rows returned. A map of the world is also displayed with locales highlighted and number of sessions
displayed in a rollover window.

4.10.5 Operating System Summary
Lists the most popular operating systems with the option to filter by date and number of rows returned.

4.10.6 Browser Summary
Lists the most popular browsers with the option to filter by date and number of rows returned.

4.10.7 Session Summary
Displays the standard 3-graph representation of sessions.

FarCry Developer Course Page 29

4.10.8 Session Paths
Displays a listing of recent visitors that can be filtered by date, number of rows returned and IP address.
Information displayed:

 IP address
 Date viewed
 Number of pages viewed
 Link to “View Path” (displays a listing of all pages user has viewed in that session with the

amount of time spent on each page also shown.)

4.10.9 Who’s on Now
A list of all current users on the site. Information displayed:

 IP address
 Locale
 Been active for (time in minutes)
 Last Activity (time in minutes)
 Pages viewed
 Link to “View Path” (same screen as described in Session Paths)

4.10.10 Google Key Words
A listing of the most popular Google keyword searches with the option to filter by date and the number of
rows returned.

4.10.11 Recent Searches
A listing of recent in-site searches with the option to filter by date and the number of rows to return. Results
are displayed as:

 Search String
 Results (number of results returned)
 Date/Time
 Locale
 Remote IP

4.10.12 Site Searches Returning No Results
A listing of in-site search strings that returned no results with the option to filter by date and the number of
rows returned.

4.10.13 Most Popular Site Searches
A listing of the most popular in-site search strings with the option to filter by date and the number of rows
returned.

4.10.14 Clear Stats Log
Deletes all stats related information from the database.

4.10.15 All Logins
Shows details for FarCry logins. Details displayed are:

 Date
 Location (IP address)
 Note
 User

FarCry Developer Course Page 30

4.10.16 Failed Logins
A listing of all failed login attempts. Details displayed are:

 Date
 Location (IP address)
 Note
 User

4.10.17 Daily User Login Activity
A graph displaying the number of logins per hour for the last 3 days.

4.10.18 Weekly User Login Activity
A graph showing the number of logins per day of the last 4 weeks.

4.10.19 User Activity
A utility that lists all database activity by FarCry users. Results can be filtered by user, activity type (eg
login, delete) and the number of rows returned. The results are shown as:

 Date
 Activity
 Object (linked to a preview of the object)
 Note
 User
 Location (IP address)

FarCry Developer Course Page 31

5 Webskins
A webskin is the design template used to display an object. It is the presentation layer of our application.
Each FarCry type can have one or more webskins to allow for multiple ways to view the same data. A
webskin is usually a combination of HTML/CSS for presentation and ColdFusion for any logic and
outputting of dynamic values. Each webskin template has the stObj ColdFusion structure available to it.
This structure contains all the values from the database for the object being viewed.

In this unit we will create our own set of webskins for the Solar Safaris website. We will design the
following:

 Home Page
 Standard Page
 News Page

At the end of the unit we will have designed a site that looks like:

FarCry Developer Course Page 32

5.1 MOLLIO

Mollio is a sample application that comes with the FarCry installation package. It has its own set of
webskins that are cleverly designed using HTML and CSS. We could use the default Mollio templates and
our site would look great and conform to a number of web standards (try browsing the site now
http://localhost/solar) but often designers want a completely custom design which means starting from
scratch. That is what we are going to do now.

Open Windows Explorer and browse to C:\farcry\projects\solar_safaris\webskin

FarCry Developer Course Page 33

You will notice there is a directory for each of FarCry’s content types. Open the dmHTML directory and you
will see the following files.

There are two types of files in this directory.

1. displayPage* (these are the primary webskin templates and are used when viewing the full
object, either via a preview or when clicking a link to the object within the site)

2. displayTeaser* (these are webskin templates used in containers. They usually display just a short
amount of information about the object with a link through to the full display)

To start working with a clean slate we need to delete all the Mollio webskins. To do this, go back up to the
webskin directory. Select all directories and delete them. There should now be nothing in your webskin
directory.

FarCry Developer Course Page 34

5.2 HOME PAGE

The home page for Solar Safaris is a dmHTML object. This means we need to create a webskin for the
dmHTML type. To do this create a new file in your preferred code editor and save it as
C:\farcry\projects\solar_safaris\webskin\dmHTML\displayPageHome.cfm

5.2.1 Hello World
Add the following code to the page to produce a standard “Hello World” page.

<cfoutput>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>
<head>

<title>Untitled</title>
</head>

<body>

<h1>Hello World</h1>

</body>
</html>
</cfoutput>

Save the file.

If you try and view the site now you will get an error telling you that the template was not found. This is due
to the homepage being set to use the displayPageTypeA.cfm file by the install process. We need to log in
and change which template our home will use.

Perform the following tasks:
 Login to FarCry
 Click on the “Site” tab

FarCry Developer Course Page 35

 Select the page under the “Home” node – “farcry - open source”
 Click the “Send object back to draft” link in the right hand pain (you can’t edit an approved object)
 Add a brief comment such as “home page re-design” and click the “Submit” button
 You are now back the object overview page and you will notice there is now the option to edit the

page. Click the “Edit this content item” link.
 You will notice for “Display Method” there is a message “No Content Templates Available”. This is

because FarCry looks for a special line in each webskin template, which gives a short title for the
template.

 Add the following line to your displayPageHome.cfm file (at the top of the page is best)

<!--- @@displayname: Home Page --->

 Save the file and then refresh the edit frame in FarCry (you may need to updateApp)
 Select “Home Page” from the “Display Method” drop down list.
 Change the title to “Welcome”
 Click “Save”

 Refresh the homepage of your site (http://localhost/solar)

This is a very simple webskin. Obviously not much use to us if we want to display dynamic content but it is
a basic form of a webskin. Now let’s go ahead and add some dynamic output to the webskin.

FarCry Developer Course Page 36

FarCry Developer Course Page 37

5.2.2 Dynamic Content

Add the following line code to your displayPageHome.cfm file just under the <h1> tags

<cfdump var="#stObj#">

Refresh your home page. The dump shows all the values for our “Welcome” page:

We can reference any of these values via stObj.fieldName eg stObj.title. Change your
displayPageHome.cfm file to now output the page title and body.

FarCry Developer Course Page 38

Your file should now look something like this:

<!--- @@displayname: Home Page --->
<cfoutput>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>
<head>

<title>#stObj.Title#</title>
</head>

<body>

<h1>#stObj.Title#</h1>

<!--- display body content --->
#stObj.body#

</body>
</html>
</cfoutput>

The resulting home page should look like:

5.2.3 Basic Design

Ok now let’s give the page a bit of a facelift by adding some basic styles and a header image.

First go to the C:\farcry\projects\solar_safaris\www\css folder and delete the 3 style sheets in that
directory. Also delete all files under C:\farcry\projects\solar_safaris\www\wsimages (wsimages is short for
“webskin images”. This is where images used in the template design are stored. Images that are added to
the system through FarCry are saved under the www\images folder).

Copy the “images\header.gif” file from the training CD into the
C:\farcry\projects\solar_safaris\www\wsimages directory. Copy the “style sheets\styles.css” file from the
training CD into the “C:\farcry\projects\solar_safaris\www\css” directory.

Then make the following changes to your displayPageHome.cfm file:

FarCry Developer Course Page 39

<!--- @@displayname: Home Page --->
<cfoutput>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<!--- import style sheet --->
<link rel="stylesheet" type="text/css" href="#application.url.webroot#/css/styles.css"

media="screen" />
<!--- page title taken from current object's label --->
<title>#application.config.general.sitetitle#: #request.stObj.label#</title>

</head>
<body>

<!--- set up main layout table --->
<table align="center" width="760">
<tr>

<!--- header image linked back to homepage --->
<td><img

src="#application.url.webroot#/wsimages/header.gif" border="0"
alt="#application.config.general.siteTitle#"></td>
</tr>
<tr>

<td>
<table class="primaryNav">
<tr>

<td>
<!--- primary navigation code --->
Navigation to go here

</td>
<td align="right">

<!--- search form --->
Search form to go here

</td>
</tr>
</table>

</td>
</tr>
<tr>

<td>
<h1>#stObj.label#</h1>

<!--- display body content --->
#stObj.body#
</td>

</tr>
<tr>

<td class="footerNav">
<!--- copyright info --->
© #year(now())# Solar Safaris

</td>
</tr>
</table>

</body>
</html>
</cfoutput>

FarCry Developer Course Page 40

The above changes import a style sheet, add a header image and a placeholder for navigation and search
functions and also add a footer displaying a copyright message.

Refresh your homepage, it should now look like:

5.2.4 Site Title

You will notice the page title is “farcry: farcry – open source”. By default the installer sets the general config
item siteTitle to “farcry”. To update this perform the following tasks:

 Login to FarCry
 click the “Admin” tab
 click the “Config Files” link
 select the “General” config file
 In the “siteTitle” field change “farcry” to “Solar Safaris” and change the siteTagLine to “For an

adventure out of this world”
 Click “Update Config”

FarCry Developer Course Page 41

Refreshing the homepage should now show the updated page title:

5.2.5 Primary Navigation
FarCry uses the Nested Tree Model (NTL) for its navigation hierarchy. There are a number of functions
available to the developer to return navigation elements very quickly with very little code. Some of the
functions in the core/packages/tree.cfc include:

 getDescendants (returns all objects below the passed in object)
 getAncestors (returns all objects above the passed in object)
 getChildren (returns objects one level down from the passed in object)
 getParentID (returns the object directly above the passed in object)
 getSiblings (returns all objects with the same parent as the passed in object)
 getNode (gets all details of the object passed in)

To produce our primary navigation we will use the getDescendants method of the tree.cfc. As the tree
component is often used it has been placed in the application.factory.oTree scope so that you don’t have
to create the object each time you want to call a method.

Add the following lines of code to your displayPageHome.cfm file at about line 26 (under the primary nav
comment):

<!--- set up where clause filter --->
<cfset navFilter=arrayNew(1)>
<cfset navfilter[1]="status IN (#listQualify(request.mode.lvalidstatus, "'")#)">

FarCry Developer Course Page 42

<!--- get navigation nodes --->
<cfset qNav = application.factory.oTree.getDescendants(objectid=application.navid.home, depth=1,
afilter=navFilter ,bIncludeSelf=1)>
<!--- dump results --->
<cfdump var="#qNav#">

The above code first sets up an array to pass into the getDescendants method as a filter. This filter is
basically a “where” clause in a SQL statement. This particular filter makes sure that only objects that are in
the current view mode are returned.

By default only “Approved” objects are shown. If you are logged in you can use the widget menu and
select the “Show Draft” link to allow draft objects to be displayed in your site (only you will see them).

A quick tip for development is to set the viewing mode to draft manually so that you don’t have to be
logged in to see your site whilst it is under development. Add the following line to
C:\farcry\projects\solar_safaris\config_serverSpecificRequestScope.cfm

request.mode.lValidStatus = "draft,pending,approved";

“_serverSpecificRequestScope.cfm” is a project config file enabling developers to both override the default
FarCry request scope variables and add custom project request variables which will be available through
the application.

The remaining code above is the actual call to the getDescendants method. The arguments being passed
in are:

 objectId (The objectid of the node you want to get the descendants for. In this case we are
passing in application.navid.home, which is equal to the objectid column in the navigation node
“home”. This is a nav alias, and can be set when editing navigation objects)

FarCry Developer Course Page 43

 depth (how many levels down to you want to return. In this case we only want one level but if you
were using some sort of drop down structure you would return multiple levels)

 aFilter (an array of where clauses)
 bIncludeSelf (Boolean flag if you want to include the object you are passing in as part of the

returned results)

The getDescendants method will return a query object, which we have called qNav. If you reload the home
page you will see a dump of the returned query.

You can see this query has everything we need to build a navigation menu. It has returned the results in
order from the highest point in the tree down and has also returned the objectids and the objectnames for
use to build a link structure.

Remove the cfdump code and add the following loop to display the navigation menu:

<!--- loop over navigation and display each node --->
<cfloop query="qNav">
 #qNav.objectname#
 <!--- check if object is not the last returned object --->
 <cfif qNav.currentRow neq qNav.recordCount> | </cfif>
</cfloop>

The above code simply loops over the returned query and creates a link for each record. The link points to
the objectid of the record and displays the objectName field as the link text. A simple if statement is added
to only add the | if it’s not the last record returned.

FarCry Developer Course Page 44

Refresh your homepage. It should now look like:

5.2.6 Quick Site Builder
Let’s go ahead now and add some navigational structure to our site. We don’t really need the “Support”
page that was added during the install process so log into FarCry, click the site tab and delete the
navigation node called “Support”.

Before we go and add some new navigation items we should create a new dmHTML webskin for a
standard page. For the moment just copy the existing displayPageHome.cfm into a new file called
displayPageStandard.cfm (we’ll modify this webskin later). The only line you need to change is

<!--- @@displayname: Home Page --->

Change it to:

<!--- @@displayname: Standard Page --->

Save the file.

To build a navigation structure we could add a Navigation node to the tree under the home node and then
add a HTML page beneath that and repeat the process for all our new pages, or we could use the “Quick
Site Builder” utility under the admin node. This is an excellent tool when in development as it quickly builds
a site structure without having to do each page manually. To create our navigation structure perform the
following tasks:

 Login to FarCry
 Click the “Content” tab
 Choose “Content Utilities” from the sub-section drop down menu

FarCry Developer Course Page 45

 Click the “Quick Site Builder” link in the left hand menu
 Ensure “Home” is selected in the “Create Structure Within” drop down
 Set status to “Draft” so that we can edit the objects later and add some content
 Check the “Create dmHTML items…” checkbox
 Select “Standard Page” as our “Display Method”
 Uncheck the “Create nav aliases” checkbox (we don’t need them at this stage)
 Enter the following structure into the textarea:

About Us
Destinations
Safaris
News
Contact Us

 Click the “Build Site Structure” button.

This will automatically create the 5 navigation nodes and associated html pages for you. Clicking on the
“Site” tab should show you the updated hierarchy:

Repeat the process now for the “Footer” navigation node (under the “Utility” node). Add the following
structure using the quick site builder:

Disclaimer
Contact Us
Site Map

FarCry Developer Course Page 46

Refreshing the home page should now look like:

FarCry Developer Course Page 47

5.2.7 Footer Navigation
Go ahead and create a footer menu using the same principles as the primary navigation. The objectid you
want to pass in is #application.navid.footer#. The result should look like:

Try clicking on the navigation links. You will notice that clicking on the footer navigation items won’t show
the footer navigation. This is because we added it to the displayPageHome webskin and didn’t update the
displayPageStandard webskin. We could copy the code between the two webskins but the better way is to
include the header and footer code as custom tags so you only have to update the code once.

FarCry Developer Course Page 48

5.3 HEADER

Create a new file called “header.cfm” and save it in C:\farcry\projects\solar_safaris\webskin\includes.

We can copy from the displayPageHome.cfm file everything above the #stObj.body# tag except for the
@@displayname line, and paste it into our header file. The only changes we then need to make is change
the <h1>#stObj.label#</h1> to <h1>#request.stObj.label#</h1> and add a closing </cfoutput> tag to the
bottom of your file. Your header.cfm file should look like this:

<cfoutput>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<!--- import style sheet --->
<link rel="stylesheet" type="text/css" href="#application.url.webroot#/css/styles.css"

media="screen" />
<!--- page title taken from current object's label --->
<title>#application.config.general.sitetitle#: #request.stObj.label#</title>

</head>
<body>

<!--- set up main layout table --->
<table align="center" width="760">
<tr>

<!--- header image linked back to homepage --->
<td><img

src="#application.url.webroot#/wsimages/header.gif" border="0"
alt="#application.config.general.siteTitle#"></td>
</tr>
<tr>

<td>
<table class="primaryNav">
<tr>

<td>
<!--- primary navigation code --->
<!--- set up where clause filter --->
<cfset navFilter=arrayNew(1)>
<cfset navfilter[1]="status IN

(#listQualify(request.mode.lvalidstatus, "'")#)">

<!--- get navigation nodes --->
<cfset qNav =

request.factory.oTree.getDescendants(objectid=application.navid.home, depth=1,
afilter=navFilter,bIncludeSelf=1)>

<!--- loop over navigation and display each node --->
<cfloop query="qNav">

#qNav.objectname#

<!--- check if object is not the last returned object --->
<cfif qNav.currentRow neq qNav.recordCount><cfoutput> |

</cfoutput></cfif>
</cfloop>

</td>
<td align="right">

<!--- search form --->

FarCry Developer Course Page 49

Search form to go here
</td>

</tr>
</table>

</td>
</tr>
<tr>

<td>
<h1>#request.stObj.label#</h1>

</cfoutput>

We now need to include this header file in our displayPageHome webskin. Add the following line:

<!--- include header code --->
<cfmodule template="/farcry/projects/#application.applicationname#/webskin/includes/header.cfm">

And add an opening <cfoutput> tag beneath it. Your displayPageHome file should now look like:

<!--- @@displayname: Home Page --->

<!--- include header code --->
<cfmodule template="/farcry/projects/#application.applicationname#/webskin/includes/header.cfm">

<cfoutput>
<!--- display body content --->
#stObj.body#
</td>

</tr>
<tr>

<td class="footerNav">
<!--- set up where clause filter --->
<cfset navFilter=arrayNew(1)>
<cfset navfilter[1]="status IN (#listQualify(request.mode.lvalidstatus, "'")#)">

<!--- get navigation nodes --->
<cfset qFooter =

request.factory.oTree.getDescendants(objectid=application.navid.footer, depth=1, afilter=navFilter)>
<!--- loop over navigation and display each node --->
<cfloop query="qFooter">

#qFooter.objectname# |

</cfloop>
<!--- copyright info --->
© #year(now())# Solar Safaris

</td>
</tr>
</table>

</body>
</html>
</cfoutput>

5.4 FOOTER

Following the same principles as the header include file, go ahead and create a “footer” include file. You
will need to perform the following tasks:

FarCry Developer Course Page 50

 Create a new file called footer.cfm in the C:\farcry\projects\solar_safaris\webskin\includes folder
 Cut the footer content out of the displayPageHome webskin and paste it into the footer file
 Add an include call in the displayPageHome webskin to include the new footer code

Refreshing the homepage should again show no changes.

5.5 STANDARD PAGE

Update the displayPageStandard webskin to make use of the new header and footer files.

Now we’ll add a breadcrumb to the top of our displayPageStandard webskin to show us where we are in
the site hierarchy. The breadcrumb code is very simple as FarCry provides us with a breadcrumb
generator. First we need to include the webskin custom tag library. Add the following code to the top of
your displayPageStandard webskin:

<!--- import webskin tag library --->
<cfimport taglib="/farcry/core/tags/webskin" prefix="skin">

To display the breadcrumb we need to call the custom tag. Place the following code just below the header
include code:

<!--- breadcrumb trail --->
<div id="breadcrumb">

<skin:breadcrumb separator=" / " here="#stobj.Title#">
</div>

Save the file and refresh the “About Us” page. You’ll see the breadcrumb trail below the heading with a link
back to the home page.

FarCry Developer Course Page 51

The full webskin code for displayPageStandard should now look something like:

<!--- @@displayname: Standard Page --->

<!--- import webskin tag library --->
<cfimport taglib="/farcry/core/tags/webskin" prefix="skin">

<!--- include header code --->
<cfmodule template="/farcry/projects/#application.applicationName#/webskin/includes/header.cfm">

<cfoutput>
<!--- breadcrumb trail --->
<div id="breadcrumb">

<skin:breadcrumb separator=" / " here="#stobj.Title#">
</div>

<!--- display body content --->
#stObj.body#
</cfoutput>

<!--- include footer code --->
<cfmodule template="/farcry/projects/#application.applicationName#/webskin/includes/footer.cfm">

Ok we now have most of the functionality we require for the time being so let’s go back and add some
content to the “Welcome”, “About Us” and “Disclaimer” pages. If you are not feeling very creative you can
copy the text from the training CD in the “content” folder. Also modify the displayPageHome webskin so
that it displays two columns, the left column with the welcome message the right column blank for the time
being.

The home page should now look something like:

FarCry Developer Course Page 52

The About Us page should look something like:

To add an image to an HTML page you’ll need to first add it to an image library. There are a couple of
ways to achieve this task; we’ll look at adding the image to the global Media Library first.

In the webtop make your way to “Media Library Image” within the Media Library section of the Content tab.

FarCry Developer Course Page 53

Click the “Add” button to be presented with a form to upload an image from your computer.

Enter “Solar Safaris Crew” as the Image Title and Alternate Text

Make sure the “Add to Library” checkbox is checked

Select the “crew.jpg” image to upload which can be found in the “content” folder of the CD.

We won’t be generating a mid-size or thumbnail image so make sure those checkboxes are un-ticked.

Click “save” to upload the image.

FarCry Developer Course Page 54

The image will have been uploaded and now exists in your projects Media Library from where you can
attach it to almost any content type.

Navigate to the “About Us” page in the Site tab and create an editable draft object. On the “body” step you
will see a “Relationships” area under the body section.

The Relationships area allows a user to attach Associated Media or Associated Content to their HTML
page. In the Associated Media library you can attach an image, file and flash movie. Click the “Open
Library” button which will launch a new “Library” window.

In this window you will see your “Solar Safaris Crew” image in the right hand pane. Drag it across to the
left hand pane with your mouse to attach it to your HTML page, and then click close.

FarCry Developer Course Page 55

You can now see that the “Solar Safaris Crew” image is sitting within the Associated Media library on your
HTML page.

To place this image in the body content of your “body” content you can use the toolbar of the richtext
editor. On the 2nd bar of the richtext editor there is button which is modelled after the farcry logo.

Clicking this button will launch a popup providing a tab for all the content types you can associate with
your dmHTML object.

FarCry Developer Course Page 56

1. Select the “Item” you want
2. Select “Source Image” from the list of relevant “Templates”
3. Press [preview]
4. Press [insert]

The image will now be sitting within your body content where you can move it with your mouse to
wherever you want it.

FarCry Developer Course Page 57

A downside to this approach is that you need to upload your image to the Media Library before
creating/editing your HTML page. This can be troublesome as often a user may be editing their HTML
page and then need to navigate to the Media Library before coming back to attach the image.

Luckily there is a shortcut you can take advantage of which is simply allows the user to upload the
image(s) while editing an HTML page.

To do this open the Associate Media library (Open Library), then click the “Add New” tab.

From this screen you can upload an image just as you would do in the Media Library. When you are
finished click “Attach” which will upload your image and attach it to your Associated Media library.

FarCry Developer Course Page 58

5.6 NEWS PAGE

5.6.1 Standard Webskin

Before you can view news items on our site we need to create a webskin for the News type. Create a
displayPageStandard webskin and save it under C:\farcry\projects\solar_safaris\webskin\dmNews. This
webskin will be almost identical to the dmHTML version except that you may wish to display date and time
information for the News version (you may want to dump stObj structure again to see available fields).

Add at least 2 news items to the system via the “Content” tab in FarCry. There are some more example
news items on your training CD under the “content” directory.

If you were to preview a news item from within FarCry is should display something like:

5.6.2 Container

We now need to get these news stories listed on the “News” page. To do this we are going to add a
container to the dmHTML displayPageStandard webskin so that we can publish the news rule on the page.
You can think of containers as a placeholder for content and rules as the content providers for the
containers.

To add a container to the dmHTML displayPageStandard webskin you first need to import the container
custom tag library and then need to add the actual container following code below the body output so that
we can display standard page content first if we need to.

FarCry Developer Course Page 59

<!--- import the container tag library --->
<cfimport taglib="/farcry/core/tags/container" prefix="con">

<!--- page based container --->
<con:container label="#stobj.objectID#_bottom">

5.6.3 Teaser webskin
Rules display information via teaser webskins. These are a short version of a webskin don’t usually
contain header or footer code as more than one object is likely to be displayed by each rule. Before we
can publish our news items we need to create a teaser webskin for dmNews. Create a new file called
displayTeaserStandard.cfm and save it under C:\farcry\projects\solar_safaris\webskin\dmNews. All we
really want to display is the title, date published and teaser text so add the following code to the webskin:

<!--- @@displayname: Standard Teaser --->
<cfoutput>
<!--- Show heading and link it to full news item --->
<h3>#stObj.label#</h3>

<!--- show date last updated --->
<p>[#dateFormat(stObj.dateTimeLastUpdated, "dd-mmm-yyyy")#]</p>

<!--- show teaser content --->
<p>#stObj.teaser#</p>
</cfoutput>

5.6.4 News Rule
To add the rule to the “News” page browse to the page and then choose “Show Design” from the widget
menu. Design mode displays all containers on the page and allows you to edit each container’s contents.

FarCry Developer Course Page 60

The page should then refresh and the container displayed:

Click the Edit Widget on the left hand side of the container to bring up Container Management screen.

FarCry Developer Course Page 61

As there are no existing rules set for this container we need to select a rule from the “Available Rule
Types” and add it to the “Active Rules” list and “Commit Changes”. Select the “News Rule” from the list
and click the “Commit Changes” button to add it to the active rules list.

You should now be presented with the News Rule edit handler where you can select display method,
restrict by categories and other filters. Ensure that our new teaser display webskin for dmNews is listed in
the “Display Method” drop down.

FarCry Developer Course Page 62

The default values are ok for the moment so click “go” to save the settings. If you now refresh your “News”
page you will see your recently add news items listed using the new teaser webskin method. You can now
hide the container by choosing “Hide Design from the widget menu.

Try clicking on the news heading to ensure they display the full news item.

5.6.5 Additional Teaser webskins

Try adding another teaser display method for dmNews and modify the News Rule to use the new display
method. This time you may want to show the author of the news item and the date and time it was last
updated.

5.6.6 Breadcrumbs and Dynamic Pages

The last thing required for the news webskins is to fix the breadcrumb when viewing a news item. Eg when
viewing the “New Website Live” news item the breadcrumb is shown as “Home / New Website Live” where
it should be shown as “Home / News / New Website Live”. This is because the news item doesn’t fit into
the navigation hierarchy like a normal page, it’s known as dynamic content. The same news item could
appear in many places throughout the site. To fix this we need to add some code that tells the breadcrumb
where in the site want to show the news item as being. Change the existing breadcrumb code to the
following in the displayPageStandard webskin for dmNews :

FarCry Developer Course Page 63

<!--- set navid to news nav node --->
<cfparam name=”application.navid.news” default=”#application.navid.home#” />

<cfoutput>
<!--- breadcrumb trail --->
<div id="breadcrumb">

<skin:breadcrumb separator=" / " here="#stobj.Title#" includeSelf="true"
parentnode=”#application.navid.news” />
</div>

The above code sets the current navid manually to the value of the news nav alias. We need to set this by
editing the “News” node in FarCry and adding an alias of “news”.

Now when you view a news item the breadcrumb should display correctly.

FarCry Developer Course Page 64

5.7 UNIT REVIEW

In this unit you have learnt:

 The concept of webskins as display templates
 How to generate multiple webskins for each content type
 How to call tree methods via the request factory scope
 How to produce dynamic navigation menus
 How to add breadcrumbs to a webskin
 How to add containers to a webskin
 How to set and reference Navigation Aliases
 How to add a rule to a container
 How to use teaser webskin methods

FarCry Developer Course Page 65

6 Include Objects

Include Objects are a way to insert custom code within FarCry. It can be as simple as a self-posting form
or a complex page referencing external systems. They fit right into the navigation hierarchy tree and can
quickly add new functionality to your site.

6.1 SITEMAP

The first Include Object we will add to the Solar Safaris website is a site map that will show the site
hierarchy on a single page.

6.1.1 Inserting Include Object
Include Objects are stored as .cfm files under the <appName>/includedObj directory. If you look at the
C:\farcry\projects\solar_safaris\includedObj directory you will see that FarCry comes pre-installed with two
include objects, a site map and search (ignore the _doNotDelete file, this is a blank file for cvs).

To make use of these Include files we need to insert them into our site navigation hierarchy. Perform the
following tasks to insert the Site Map include object into the Solar Safaris website:

 Login to FarCry
 Click the “Site” tab
 Click the “Utility” tab at the top of the left hand pane
 Expand the “Footer” navigation node
 Expand the “Site Map” navigation node
 Delete the “Site Map” html object
 Click the “Create Include” link

FarCry Developer Course Page 66

 Enter a title of “Site Map”
 Select “_siteMap.cfm” from the “Include” drop down
 You will notice that there are no display methods available. We need to create one before we can

continue.

FarCry Developer Course Page 67

6.1.2 dmInclude webskin

The webskin for dmInclude is very simple. We just need to include our standard header and footer and
another include call for the actual Included Object code. Create a new file called displayPageStandard.cfm
and save it in the C:\farcry\projects\solar_safaris\webskin\dmInclude directory. Then add the following
code to the page:

<cfsetting enablecfoutputonly="true" />
<!--- import tag libraries --->
<cfimport taglib="/farcry/core/tags/webskin" prefix="skin">

<cfmodule template="/farcry/projects/#application.applicationname#/webskin/includes/dmHeader.cfm"
pageTitle="#stObj.title#" />

<!--- use skin:include tag to include the file. --->
<skin:include template="#stObj.include#" />

<cfmodule template="/farcry/projects/#application.applicationname#/webskin/includes/dmFooter.cfm">

<cfsetting enablecfoutputonly="false" />

Save the file and refresh the edit page in FarCry. You should now see our new display method listed. Go
ahead and complete the edit form and click the “OK” button.

FarCry Developer Course Page 68

You can now either preview the page from FarCry or browse the Solar Safaris website to the “Site Map”
page to see our Include Object. It should list all the pages under the homepage and create a link for each.

6.1.3 Sitemap custom tag

Open the C:\farcry\projects\solar_safaris\includedObj_siteMap.cfm file to look at how the Site Map is
generated.

You will see there are only a few lines of code in the file, an import for the webskin tag library, a caching
tag (more about this later) and a call to the sitemap custom tag. Take a look at this custom tag by opening
the file C:\farcry\core\tags\webskin\siteMap.cfm. You will see that it uses very similar code to our
navigation menus, primarily the getDescendants tree method. There are few attributes you can pass in to
customise the results but the basic code is very simple. If this code doesn’t produce a sitemap that meets
your requirements you can always create your own custom sitemap in your include file, but you will find
this custom tag method will meet your requirements for the vast majority of the time.

FarCry Developer Course Page 69

6.2 SEARCH

The other pre-installed Include Object is a search form. This is quite a powerful search utility that searches
through the sites verity collections, collates the results and displays them with a ranking, linked title and
view of the contents that matched the search criteria. There are a few things we need to configure before
we can use the search Include Object.

6.2.1 Verity Config
FarCry has a configuration file for verity that lists all object types in the system with the option to select
which properties of each type should be indexed and available to the verity search interface. You can also
index an external directory if required.

Login to FarCry, click the “Admin” tab, select the “Verity Management” option from the sub-section drop-
down menu and then click “Verity Config”. If you click the “dmHTML” link you will see all the properties for
the dmHTML type appear and see that “Body”, “Title” and “Teaser” are already selected by default. The
same fields are also selected for the dmNews type.

As we only have news and html content at the moment these settings will do for now. As we didn’t make
any changes we don’t need to update the config file. We will come back later and add some more
selections to expand our search capabilities.

FarCry Developer Course Page 70

6.2.2 Build Collections
FarCry will only let verity index approved content items so before we can build the search collections we
need to approve some content. Go ahead and approve the two news items, the “About Us”, “Welcome”
and “Disclaimer” pages.

Now that we have some approved content we can go ahead and build our collections. Click the “Admin”
tab then the “Verity Management” option from the sub-section drop-down and then the “Build/Update All
Collections” link. This will check if we already have a collection for both the dmHTML and dmNews types, if
not it creates one for us. It then goes through all approved objects and indexes them in the appropriate
collection. It also removes deleted pages from the collection.

FarCry Developer Course Page 71

6.2.3 Search Form
We now need to build a search interface so that users can search by keyword in the Solar Safaris website.
We’ll add a simple form to the header file that has a text input box and a submit button. Add the following
code to the C:\farcry\projects\solar_safaris\webskin\includes\header.cfm file replacing the “search form to
go here” text:

<form action="#application.url.conjurer#?objectid=#application.navid.search#"
 method="post" style="display:inline;">

<input type="text" name="criteria"> <input type="submit" value="Search">
</form>

You will see that the action value for the form uses a “search” nav alias. During the install process a
“Search” navigation node is created for us under the “Utility” node and a nav alias of “search” is set. An
include object is also created for us using the “_search” include code. The only problem we have is that
this include object was set to use a display method called “displayDefault” and we called ours
“displayPageStandard” so we need to log into FarCry and change this value now.

FarCry Developer Course Page 72

If you now refresh your homepage you will see the search form displayed in the header section of the
page. Try searching for “Mars” and see if you get any results.

You will see the results are returned with a ranking, the title of the object shown and linked through to the
full page and the keyword highlighted in context so you can get a feel for what the page is about. There is
also the option to search by:

 Any of these words (an OR search)
 All of these words (an AND search)
 These words as a phrase (a “phrase” search)

6.2.4 Include Object

Again if this doesn’t quite meet your needs you can customise the include object but it is a very powerful
search interface without having to write a line of code! If you open the
C:\farcry\projects\solar_safaris\includedObj_search.cfm file you will see the following logic:

 Get the active verity collections for the site (as specified in the verity configuration file)
 Prepares the search criteria keywords adding verity operators were appropriate

FarCry Developer Course Page 73

 Performs the search using the FarCry search component
 Displays a keyword search form
 Displays the search results
 Displays pagination navigation

FarCry Developer Course Page 74

6.3 CONTACT US

Let’s add one more Include Object to the Solar Safaris site for now, an online contact form where users
can enter their details and a short message and send it to the Solar Safaris contact team. To do this we
will perform the following:

 Create a self posting form capturing name, email and message
 Add form validation
 Create a custom configuration file to store the address the message should be sent to
 Send the message using cfmail
 Link to the one form from two locations within the site using Symbolic Links

6.3.1 Contact Form
Create a new file called _contact.cfm and save it in the C:\farcry\projects\solar_safaris\includedObj
directory. We need to create a form with three fields:

 Name (the user’s name)
 Email (the user’s email address so they can be contacted in the future)
 Message (the message the user wants to send to Solar Safaris)

Add the following code to you _contact file to produce the form:

<cfoutput>
<!--- default values --->
<cfset showForm=1>
<cfparam name="form.userName" default="">
<cfparam name="form.emailAddress" default="">
<cfparam name="form.message" default="">
<cfset error="">

<!--- check if form has been submitted --->
<cfif isdefined("form.submit")>

<!--- form has been submitted so we don't need to show the form --->
<cfset showForm=0>
<!--- add form action code --->

</cfif>

<cfif showForm>
<!--- display the form --->
<form action="#application.url.conjurer#?objectid=#application.navid.contact#" method="post"

name="contact">
<table border="0" cellpadding="3" cellspacing="3">

<tr>
<td colspan="2" align="left">Please enter your name, email & message

below.</td>
</tr>
<tr>

<td colspan="2"> </td>
</tr>
<tr>

<td align="left">Name</td>
<td align="left"><input type="text" name="userName"

value="#form.userName#"/></td>
</tr>
<tr>

<td align="left">Email</td>

FarCry Developer Course Page 75

<td align="left"><input type="text" name="emailAddress"
value="#form.emailAddress#"/></td>

</tr>
<tr>

<td align="left" valign="top">Message</td>
<td align="left"><textarea name="message" rows="10"

cols="35">#form.message#</textarea></td>
</tr>
<tr>

<td> </td>
<td align="left"><input type="submit" name="submit" value="Send Message"

class="submit"/></td>
</tr>

</table>
</form>

</cfif>
</cfoutput>

The above code is a simple self posting form that checks if the form has been submitted, if it has it sets a
flag to not show the form and process any form actions, otherwise it displays a form with name, email and
message fields. You will notice the form action uses a navigation alias called “contact”. This doesn’t exist
yet so we need to set that now.

 Log into FarCry
 Click the “Site” tab
 Edit the “Contact Us” navigation node
 Click the “Advanced Options” button
 Add a “Nav Alias” of “contact”
 Click the “OK” button to save the details.

While we are there we should delete the “Contact Us” html page and add an Include Object instead.

 Expand the “Contact Us” navigation node in the tree
 Select the “Contact Us” html page and select “Delete”
 Select the “Create Include” link
 Enter a title of “Contact Us”
 Set the “Include” drop down to “_contact.cfm”
 Make sure the “Display Method” drop down is set to “displayPageStandard”
 Click “OK” to save

FarCry Developer Course Page 76

You should now be able to browse to the “Contact Us” page in the primary navigation bar and see the
following:

FarCry Developer Course Page 77

6.3.2 qForms validation
FarCry comes with support for the qForms JavaScript validation library. Using qForms requires very little
code and provides a consistent layer of validation across forms in your site. We are going to add validation
to our contact form by ensuring the following:

 A name is given
 An email address is given and it’s a valid format
 A message is given

First we need to load the qForms libraries. The best place to do this is in the header so we will an attribute
to the header file that is a flag for whether or not qForms needs to be loaded. It won’t be loaded by default.

Add the following code to the top of C:\farcry\projects\solar_safaris\webskin\includes\header.cfm

<!--- set default values --->
<cfparam name="attributes.bHasqForms" default="0">

Then add the following in the head section:

<!--- qForms --->
<cfif attributes.bHasqForms>

<!--// load the qForm JavaScript API //-->
<script src="js/lib/qforms.js" type="text/javascript"></script>
<script language="JavaScript" type="text/javascript">
<!--//
 // specify the path where the "/qForms/" subfolder is located
 qFormAPI.setLibraryPath("js/lib/");
 // loads all default libraries
 qFormAPI.include("*");
 //-->
</script>

</cfif>

The above code does a check if the bHasqForms attribute has been passed in and if it has and is set to
true it will load the qForms API. So now we need to modify our displayPageStandard dmInclude webskin
so that it passes the bHasqForms attribute to the header. This will allow all include objects to use the
qForms API. Change the call to the header include to the following:

<!--- include header code --->
<cfmodule template="/farcry/projects/#application.applicationname#/webskin/includes/header.cfm"
bHasqForms="1">

Now that qForms is available to us on the page, we just need to add the validation code to our form. The
following code should be placed just before the closing </form> tag in your contact include file:

<!--- form validation --->
<SCRIPT LANGUAGE="JavaScript">
<!--//
objForm = new qForm("contact");
objForm.userName.validateNotNull("Please enter your name");
objForm.emailAddress.validateNotNull("Please enter an email address");
objForm.emailAddress.validateEmail("Please enter a valid email address");
objForm.message.validateNotNull("Please enter a message");
//-->
</SCRIPT>

FarCry Developer Course Page 78

The above code first binds the form to qForms (you must name your form when using qForms) and then
for each field that we want validated we add a line specifying the name of our form field (remember
JavaScript is case sensitive), a validate function and an error message to display.

If you now reload your contact page and try to submit the form without entering any information you should
see the following:

FarCry Developer Course Page 79

6.3.3 Custom Config
Now that we have a validated form we will want to send the details passed in an email to one of the staff
members at Solar Safaris. To avoid hard coding values into our include object we can create a custom
config item to store the email address to use when sending the email. Custom configs are editable just like
any config from the FarCry “Admin” tab.

To create a custom config we need to create a new file called contact.cfm (this will be the name of the
custom config) and save it in the C:\farcry\projects\solar_safaris\system\dmConfig directory. Add the
following code:

<cfset stConfig = structNew()>
<cfset stConfig.contactEmail = "brendan@daemon.com.au">
<cfset stConfig.thankyou = "Thank you for taking the time to contact us. We will get back to you
shortly">

Save the file and perform the following tasks:

 Login to FarCry
 Click on the “Admin” tab
 Click the “Custom Config” link

 Click the deploy link (this adds the config to the database and application scope)
 Click the “Config Files” link
 You should see “contact” listed. Click “contact”

You can now update the email address used and thank you message at any time simply by logging into
FarCry and going to this edit screen – a much better approach than hard coding these values in the
include object.

Each custom config can have as many values as you like, just a new structure element for each value. You
can have as many custom config files as needed.

6.3.4 Form Action
The form action will be to email the message to the configured email address (you may need to configure
ColdFusion to use a mail server) and then display a thank you message (also from our custom config).

FarCry Developer Course Page 80

Add the following code to your contact include object, replacing the <!--- add form action code ---> line.

<!--- send email --->
<cfmail to="#application.config.contact.contactEmail#" from="#form.emailAddress#" subject="Website
Contact Form">
A message has been submitted from the website:

From: #form.userName#
Email: #form.emailAddress#
Message: #form.message#
</cfmail>

<!--- display thank you message --->
<p>#application.config.contact.thankyou#</P>
<p>Return to home page</p>

Now try submitting your name, email and message to the contact form. You should see your thank you
message appear and an email in your inbox.

FarCry Developer Course Page 81

6.3.5 Symbolic Links
Now that we have our “Contact Us” form functional we need to link the footer “Contact Us” link to the same
page. We could create another Include Object in the navigation tree but the best practice is to make the
“Contact Us” navigation node in the footer menu a Symbolic Link of the main “Contact Us” navigation
node. What this means is that when we click the footer link we are actually viewing the page from the
home branch.

To set the Symbolic Link we need to perform the following tasks:

 Login into FarCry
 Click on the “Site” tab
 Click on the “Utility” sub tab”
 Expand the “Footer” navigation node”
 Click on the “Contact Us” navigation node
 Click the “Edit” link
 Click the “Advanced Options” button
 Select “contact” from the “Symbolic Link” drop down list
 Click the “OK” button to save the changes

If you now click on the “Contact Us” link in the footer navigation of the Solar Safaris website you will see
the same form that we set for the primary navigation version. FarCry ignores the html page that is still set
under the “Contact Us” footer node because we’ve set the navigation node as a symbolic link. We can now
safely delete the “Contact Us” html page from the footer “Contact Us” navigation node.

FarCry Developer Course Page 82

6.4 UNIT SUMMARY

In this unit you have learnt:

 The concept of Include Objects
 How to set an Include Object in the navigation tree
 How to use the sitemap custom tag
 How to setup the verity configuration file
 How to build/update verity collections
 How to use the default search interface
 How to build a custom include object
 How to setup and use the qForms API
 How to create a custom configuration file
 How to create a symbolic link in the navigation tree

FarCry Developer Course Page 83

7 Custom Content Types
In this unit you will learn how to add new Content Types to FarCry, giving you greater flexibility in the way
your content is stored and presented.

FarCry 4.0 has launched a revolutionary web development tool to assist developers in not only creating
custom types, but also in creating and maintaining web forms to handle the adding, editing and deleting
requirements of that type. We will be looking at this new feature (called “FormTools”) when we create our
custom types for the Solar Safaris site.

You can create Custom Types as either Tree types or Dynamic types. Tree types allow you to use your
new Custom Type in the main navigation tree with all of the default tree behaviours. Dynamic types are
used in a similar way to dmNews and dmEvents and require a custom tab for listing and editing. They also
require a Publishing Rule to display their contents (we will cover Custom Rules in the next unit).

For the Solar Safaris website we will create two Custom Types:

 Destination
 Safari

We will first work with the Destination type, which will be used in the main navigation tree and capture
information on all the Solar Safaris destinations such as title, description, attractions and an image of the
destination.

The Safari custom type will later be developed as a Dynamic type which will be used to define the Safaris
that Solar Safaris offers, which will be a involve multiple destinations, dates and costs.

FarCry Developer Course Page 84

7.1 COMPONENT DEFINITION

The first step in creating a Content Type is the component definition. Create a new file called
destination.cfc and save it in the C:\farcry\projects\solar_safaris\packages\types folder. Add the following
code.

<cfcomponent
name="Destination"
displayname="Destination"
extends="farcry.core.packages.types.types"
hint="Custom Type for Destination content"
bUseInTree="true"
bObjectBroker="true"
objectBrokerMaxObjects="1000">

</cfcomponent>

The most important line above is the “extends” attribute. By extending the core types.cfc means that our
Destination custom type will inherit all the default type properties and methods. The default type properties
are:

 ObjectId
 Label
 DateTimeCreated
 DateTimeLastUpdated
 CreatedBy
 LastUpdatedBy
 Locked
 LockedBy

Some of the default type methods include:

 createData
 setData
 delete
 getData
 getView

The “bUseInTree” attribute sets this Custom Type to be used in the navigation tree. Once deployed there
will be the option to create a “Destination” within the tree.

Another of FarCry 4.0’s advanced features is a special server side caching mechanism called
ObjectBroker. A well known fact of web development (regardless of language) is that the biggest
bottleneck in an application is the database.

ObjectBroker effectively bypasses that bottleneck by storing content objects in server memory for
incredibly fast data lookups without the need for a roundtrip call to the database server. This is nothing
new as a concept, but it is the way in which the FarCry framework achieves this which is special.

To leverage ObjectBroker in your custom type you simply need to set the bObjectBroker flag to true and
specify how many content objects (destinations in this example) you want to store in memory.

FarCry Developer Course Page 85

7.2 PROPERTIES

Destination requires a number of properties. Add the following code inside your <cfcomponent> tags:

<!--- property definitions --->
<cfproperty ftSeq="1"

ftFieldSet="Destination Details"
name="title"
type="string"
required="true"
hint="Title of a Destination"
ftLabel="Title"
ftType="string"
ftValidation="required" />

<cfproperty
ftSeq="2"
ftFieldSet="Destination Details"
name="teaser"
type="longchar"
required="false"
hint="Short description of a Destination"
ftLabel="Teaser"
ftType="longchar" />

<cfproperty
ftSeq="3"
ftFieldSet="Destination Details"
name="description"
type="longchar"
required="false"
hint="Long description"
ftLabel="Description"
ftType="richtext" />

<cfproperty
ftSeq="4"
ftFieldSet="Attractions"
name="attractions"
type="longchar"
required="false"
hint="Destination attractions"
ftLabel="Attractions"
ftType="longchar" />

Each <cfproperty> tag represents a field that is to be created within the database table for the Content
Type. The “type” attribute determines the field type in the database table. The “required” attribute sets Null
and Not Null definitions and if a “default” attribute is defined it sets the default value for the field in the
database.

The supported property types are:

 UUID (creates a varchar or equivalent field)
 String (creates a varchar or equivalent field)
 LongChar (creates an nText or equivalent filed)
 Boolean (creates a Boolean or equivalent field)
 Date (creates a date/time field)
 Numeric (creates a numeric field)
 Array (creates a new table with objectid, data and sequence fields used to store relational

information)

FarCry Developer Course Page 86

7.3 DEPLOYMENT

To deploy the Content Type into the system perform the following tasks:

 Login to FarCry
 Click the “Admin” tab
 Select “COAPI Management” from the sub-section drop-down
 Click on the “Type Classes” link
 You will see all the core types listed as deployed (they are all deployed as part of the install

process) and your “Destination” Custom Type marked as un-deployed and a link to deploy it.

 Click the “Deploy” link. This will create a database table called “destination” and fields as defined
in with our <cfproperty> tags without requiring to open the database or run any custom SQL
scripts

FarCry Developer Course Page 87

7.4 ADDING NEW PROPERTIES

The COAPI screen all allows for additional properties to be deployed at a later time. If your type
requirements change you can simply add a new <cfproperty> tag to the component definition and then
deploy the new property via the COAPI screen. Add the following property to your destination.cfc file:

<cfproperty name="newProperty" type="string" required="false" hint="a new property">

Now refresh the “Type Classes” screen under the “COAPI” tab in FarCry. You will see it is reporting a
conflict with the “newProperty” field and has it marked as undeployed with the option to “Deploy Property”.
Go ahead and select “Deploy Property” and click the “Go” button.

The “newProperty” field has now been added to the database with no sql scripts or database manipulation
required.

7.5 DELETING PROPERTIES

You can also delete properties from a Custom Type through the COAPI screen. Remove the
“newProperty” <cfproperty> tag from your destination.cfc, save the file and then refresh the “Type Classes”
screen under the “COAPI” tab.

Select “Delete Column” and click the “Go” button. This will remove the field from the database.

FarCry Developer Course Page 88

7.6 EDIT DESTINATIONS

Thanks to the magic of FarCry 4.0 FormTools, creating administration forms to add and edit destinations is
as easy as 1-2-3. In fact because you are creating a tree type you don’t need to do anything at all! The
FarCry framework will automatically handle the building of your form to add and edit a destination.

7.7 ADDING CUSTOM TYPE TO THE NAVIGATION TREE

Now that we have the Destinations custom type defined and deployed (and FarCry is automatically
creating our edit form) we can now add a Destination to the navigation tree. Perform the following tasks to
add a Destination to the navigation tree:

 Login to FarCry
 Click on the “Site” tab
 Click on the “Destinations” navigation node”
 Click the “Create Navigation” link
 Give the new navigation node a title of “Mercury” and click the “OK” button
 You will now see “Destination” is listed under the “Create” menu. Click the “Create Destination”

link

You will now see the edit form which FarCry (using FormTools) has created for you. Add some information
about Mercury into the form (you can copy some from the “content” directory on the training CD).

The framework handles all the database processing for you, it even provides validation (try submitting the
form with no title).

Go ahead and save the Mercury destination and add navigation and destination objects for the following
planets:

 Venus
 Mars
 Jupiter
 Saturn
 Neptune
 Uranus

FarCry Developer Course Page 89

Your navigation tree should now look something like this:

7.8 STATUS

Content Types can have a status setting just as the core types can. By simply adding a property to our
custom type called status, FarCry automatically adds status functionality like request approval, approve
and send to draft. Add the following <cfproperty> tags to destination.cfc and deploy the new properties via
the COAPI screen.

<cfproperty name="status" type="string" required="true" default="draft" hint="status of the object">
<cfproperty name="commentlog" type="longchar" hint="Workflow comment log" required="no">

You will now be able to use the basic FarCry workflow for your destination objects.

FarCry Developer Course Page 90

7.9 VERSIONING

Content types can also make use of FarCry versioning. Versioning allows a draft object to be made of a
current live object so that changes can be made without affecting the live site. Ones changes have been
finalised the draft version can be sent live and the previous live version is archived.

To add versioning to a content type simply change the extends attribute of the component as follows:

<cfcomponent extends="farcry.core.packages.types.versions" displayname="Destination" ... />

Note you will need to update your application to apply the change.

If you now select an approved Destination object in your tree you will see you have a link called “Create an
editable draft version”. Click this link, and change the some of the content.

Other versioning options include:

 Restore live object over this draft
 Request approval
 Send object live
 Delete this draft version
 Send live object back to draft (deleting draft version)
 Archive dump
 Archive preview
 Archive rollback

FarCry Developer Course Page 91

7.10 WEBSKIN

Now that we have our Custom Type fully functional from an admin perspective, we now want to be able to
view it in our site. We can achieve this by allowing the user to choose a display method while editing a
destination, much like you would do in an HTML object. Add the following <cfproperty> tag your
destination.cfc and deploy it via the COAPI screen.

<cfproperty
ftSeq="5"
ftFieldSet="Display"
name="displayMethod"
type="string"
required="false"
hint="Display method template"
ftLabel="Display Method"
ftType="webskin"
ftprefix="displayPage" />

We are now ready to create our destination webskin.

Create a new file called displayPageStandard.cfm and save it under the
C:\farcry\projects\solar_safaris\webskin\destination directory. Add code to this template that identifies this
template as “Standard Display” and includes the header/footer and display all the attributes of our
destination object. Save your file and then go back and edit your “Mercury” destination page in FarCry
(you may have to send it back to draft or create a draft version first). You should now see the “Display
Methods” drop down box listing your new “Standard Display” webskin. Select this and click the “Save”
button.

Previewing the “Mercury” destination from FarCry should now look something like:

FarCry Developer Course Page 92

7.11 CHILD LINKS RULE

To list all of our new Destination objects on the “Destinations” page in the Solar Safaris website we will use
the ChildLinks rule. This rule looks down the tree from the current page and gets all the child objects
(those which are one level below) and displays them using a common teaser display method.

We first need to create this common teaser display method across dmHTML, dmInclude and dmLink (the
standard core types that are used with Child Links). Use the below code and save it as
displayTeaserStandard.cfm in the dmHTML, dmInclude, dmLink and destination directories.

<cfoutput>
<!--- Show heading and link it to full item --->
<h3>#stObj.label#</h3>

<!--- show teaser content --->
<p>#stObj.teaser#</p>
</cfoutput>

FarCry Developer Course Page 93

FarCry Developer Course Page 94

7.12 DYNAMIC CUSTOM TYPE

The next Custom Type will be a “Safari” type which will store information on the safaris that the Solar
Safaris company offers. A safari is a combination of destinations packaged together and will also have
departure date, return date, cost, teaser and description. Because the safaris are date based it is regarded
as Dynamic Content and does not fit into the navigation hierarchy. Therefore we will create a Custom Tab
for this new type and provide a listing/search interface similar to that of News and Events.

We will create a multi-step edit handler or wizard to help with all the properties on the form, and finally we
will create some webskin templates for the new type to be displayed in the website itself.

Create a new component called safari.cfc and save it under the
C:\farcry\projects\solar_safaris\packages\types directory. Add the standard component attributes (this one
doesn’t require the bUseInTree attribute) and then add the following property definitions:

 title
 cost
 displayMethod
 departureDate
 returnDate
 teaser
 description
 aDestinations (type = array. This will be used to store the destination objectids)
 categories

<!--- property definitions --->
<cfproperty ftSeq="1" ftWizardStep="Start" ftFieldset="General Details" name="title" type="string"
required="true" hint="Title of a Safari" ftLabel="Title" bLabel=”true” ftType="string" ftValidation="required"
/>

<cfproperty ftSeq="2" ftWizardStep="Start" ftFieldset="General Details" name="cost" type="numeric"
required="false" hint="Cost of a Safari" ftLabel="Cost" ftType="numeric" />

<cfproperty ftSeq="3" ftWizardStep="Start" ftFieldset="General Details" name="displayMethod"
type="string" required="false" hint="The display method to use" ftLabel="Display Method"
ftType="webskin" />

<cfproperty ftSeq="5" ftWizardStep="Start" ftFieldset="General Details" name="departureDate"
type="date" required="false" hint="The departure date" ftLabel="Departure Date" ftType="datetime" />

<cfproperty ftSeq="6" ftWizardStep="Start" ftFieldset="General Details" name="returnDate" type="date"
required="false" hint="The return safari date" ftLabel="Return Date" ftType="datetime" />

<cfproperty ftSeq="7" ftWizardStep="Start" ftFieldset="General Details" name="teaser" type="longchar"
required="false" hint="Teaser of the safari" ftLabel="Teaser" ftType="longchar" />

<!--- step 2 --->
<cfproperty ftSeq="20" ftWizardStep="Description" ftFieldset="Description" name="description"
type="longchar" required="false" hint="Description of the safari" ftLabel="Description" ftType="richtext"
/>

<!--- step 3 --->
<cfproperty ftSeq="30" ftWizardStep="Destinations" ftFieldset="Destinations" name="aDestinations"
type="array" required="false" hint="Destinations of the safari" ftLabel="Destinations" ftType="array"
ftJoin="destination" />

<!--- step 4 --->

FarCry Developer Course Page 95

<cfproperty ftSeq="40" ftWizardStep="Categories" ftFieldset="Categories" name="SafariCategories"
type="string" required="false" hint="Categories of the safari" ftLabel="Categories" ftType="Category"
ftAlias="Root" />

Deploy the new type via the COAPI screen. If you click on the “Site” tab and select a navigation node you
will notice there is no option to “Create Safari” as we didn’t set the type to use the tree. This means we
need to administer it from a Custom Tab.

7.13 CUSTOM ADMIN

FarCry has the ability to define multiple Custom Tabs in the admin interface. This allows developers to add
administration interfaces for custom types and other custom functionality. Each tab can have multiple sub
tabs and all can be secured using Policy Group permissions.

7.13.1 XML Schema
The Custom Tab structure is defined in an XML document called customadmin.xml in the
<appName>\customadmin directory. This document defines each tab (called a section), sub sections,
menus, menu items and permissions.

Use the following code for the C:\farcry\projects\solar_safaris\customadmin\customadmin.xml file:

<?xml version="1.0" encoding="utf-8"?>
<webtop>

<section mergeType="merge" id="solarSafarisSection" permission="MainNavContentTab"
label="Solar Safaris" labelType="value">

<subsection mergeType="merge" id="solarSafarisSubSection" label="Solar Safaris"
labelType="value">

<menu mergeType="merge" id="solarSafarisMenu" label="Solar Safaris"
labelType="value">

<menuitem mergeType="merge" id="solarSafaris" label="Safari"
link="/admin/customadmin.cfm?module=customLists/safari.cfm" />

</menu>
</subsection>

</section>
</webtop>

The above schema creates one main tab called “Safaris” which is only visible to users with the
MainNavAdminTab permission. A sub tab called “Safaris” is also created and uses the same permission
structure. Finally the menu itself is created with a title of “Safaris” and a link to a safaris list page (yet to be
created). To see this new tab structure log back into FarCry and append updateapp=1 to the url, eg
http://localhost/farcry/?updateapp=1. This will re-initialise the application scope. This is required as the
customadmin schema is stored as an application variable.

FarCry Developer Course Page 96

7.13.2 Object Admin
Previous versions of FarCry came with a standard interface for listing/searching dynamic content types
called Type Admin. News, Events, Links and Facts made use (and still do) of Type Admin by default, but in
FarCry 4.0 there has been an enhancement to Type Admin. The new version is called “Object Admin”
which Custom Types can easily leverage to produce similar functionality to Type Admin (but with more
power and flexability), which includes:

 Add new item
 Status changes (eg approve, send to draft, request approval)
 Delete
 Edit
 Preview
 Search
 Sorting of results
 Pagination
 Unlock

To include Object Admin functionality for our Safaris custom type we need to create a new file called
safari.cfm and save it in the C:\farcry\projects\solar_safaris\customadmin\customLists directory. Add the
following code:

<cfsetting enablecfoutputonly="true" />

<cfimport taglib="/farcry/core/tags/admin" prefix="admin" />
<cfimport taglib="/farcry/core/tags/formtools" prefix="ft" />

<!--- set up page header --->
<admin:header />

<ft:objectAdmin
title="Safaris"
typename="safari"
ColumnList="label"
SortableColumns="label"
lFilterFields="label"
sqlorderby="datetimelastUpdated desc" />

<!--- setup footer --->
<admin:footer />

FarCry Developer Course Page 97

<cfsetting enablecfoutputonly="false" />

The above code imports the tag libraries required, the calls the standard admin header code and the calls
the objectAdmin custom tag. Passed to this tag are:

 Typename of the Custom Type you want to manage
 ColumnList which defines which properties are viewable on the Object Admin screen
 SortableColumns allows you to sort (asc or desc) your result set on a particular property
 lFilterFields defines which type properties you can use to search your result set on
 sqlorderby is the default sorting of the result set, displaying the most recently edited object first

If you now click on “Safaris” tab and then the “Safaris” link you will see the Object Admin interface listing
your Safari objects. There should be none listed at this time.

Thanks to the magic of FormTools, this is all we need to do to get a multi-step edit hander for our Custom
Type.

7.13.3 Category Tree
The final step of our Wizard is a categorisation step that allows us to categorise our safari against the site
category tree. First we need to add some categories to the site category tree. To add Categories perform
the following tasks:

 Login to FarCry
 Click on the “Content” tab
 Select the “Content Utilities” option from the sub-section dropdown
 Click the “Manage Keywords” link
 Right-click on the “Root” category and click “Insert”

 Give the category a title of “Safaris”
 Insert another category under the “Safaris” category called “Inner Solar System”

FarCry Developer Course Page 98

 Insert another category under the “Safaris” category called “Outer Solar System”

If you have a large category tree to build you can also use the “Quick Category Builder” under the “Admin”
tab which functions in a similar way to the “Quick Site Builder” we used earlier.

7.14 WEBSKINS

You may have noticed that we have no Display Methods listed on the start step of our Wizard as we don’t
have any webskins created for the safari type.

Go ahead and create one now called “displayPageStandard.cfm” and save it in
C:\farcry\projects\solar_safaris\webskin\safaris. Make sure you updateApp unless you are in developer
mode.

One thing that is different from other webskins we’ve created is the arrayProperties. Use the following
code to display the destinations for each safari object:

<h3>Destinations</h3>
<!--- create the destination object --->
<cfset oDestination = createObject("component",application.types.destination.typepath)>
<!--- loop over and display teasers for all destinations --->
<cfloop from="1" to="#arrayLen(stObj.aDestinations)#" index="dest">

<cfset html =
oDestination.getView(objectid="#stObj.aDestinations[dest]#",template="displayTeaserStandard",
alternateHTML="Teaser not found") />
<cfoutput>#html#</cfoutput>

</cfloop>

FarCry Developer Course Page 99

If you now click the “Preview” icon for a Safari object under the “Safaris” see something like the following:

7.15 LAB

Now that you are familiar with Wizards go ahead and modify our destination type and change its
cfproperties to make it a multi-step Wizard and use the richTextEditor for both the “description” and
“attractions” steps.

7.15.1 Permissions
It is best practice to define a new permission for each Custom Tab to allow for maximum flexibility when
applying security to your site. Perform the following tasks to create a new permission, modify the xml
schema and assign a policy group to use the new permission:

 Login to FarCry
 Click on the “Security” tab
 Choose “Policy” from the sub-section dropdown
 Click the “Create Permission” link
 Set “Permission Name” to be “MainNavSafarisTab”
 Set Permission Type to “PolicyGroup”
 Click the “Create Permission” button

FarCry Developer Course Page 100

Change you customadmin.xml file to now use the permission “MainNavSafarisTab” instead of
“MainNavAdminTab”. Save the file and update your application scope to refresh the schema. You will now
notice that our Custom Tab is no longer visible. This is because we have not assigned the new permission
to our user’s policy group.

To assign the permission to a policy group perform the following tasks:

 Click on the “Security” tab

FarCry Developer Course Page 101

 Choose “Policy” from the sub-section dropdown
 Click on the “Policy Group Permissions” link
 Select “SysAdmin” from the “Policy Group” drop down list (SysAdmin is the default policy group

for the farcry user)

 Scroll down to the “MainNavSafarisTab” and click the “No” button to change it “Yes”
 Scroll back up and click the “Update” button

If you refresh the screen you will now see the “Safaris” Custom Tab re-appear. Permissions can be set
against the Parent Tab, Sub Tab and Link in the customadmin.xml file.

FarCry Developer Course Page 102

7.16 UNIT REVIEW

In this unit you have learnt the following:

 How to define a Custom Type
 How to deploy a Custom Type
 How to add/remove Custom Type properties
 How to use a Custom Type in the navigation tree
 How to use a Dynamic Custom Type
 How to create Custom Tabs
 How to create new permissions
 How to assign permissions to Policy Groups
 How to define a Wizard
 How to incorporate a Rich Text Editor
 How to use the FarCry category tree

FarCry Developer Course Page 103

8 Custom Rules
We now have our dynamic Content Type functional from an administration perspective and we can
preview the safari objects but we haven’t as yet displayed it in the Solar Safaris website itself. To do this
we are going to create a Custom Publishing Rule that will list all Safaris that have not yet departed and
have a status equal to that of our current viewing mode.

Creating Custom Rules is a very similar process to creating Custom Types. First we need to define our
Rule component and the properties it will have, then we deploy it via the COAPI screen. Also required are
edit and execute methods, the edit method being the form we use in the Container Management Screen
and the execute method being the code that publishes content to the container.

8.1 RULE DEFINITION

Create a new file called ruleSafaris.cfc and save it in the C:\farcry\projects\solar_safaris\packages\rules
directory. Add the following code to define our rule:

<cfcomponent
displayname="Safari Listing Rule"
extends="farcry.core.packages.rules.rules"
hint="Displays all safaris that haven't departed">

<cfproperty ftSeq="1" name="intro" type="longchar" hint="Intro text" required="false" ftType="longchar"
ftLabel="Intro" />
<cfproperty ftSeq="2" name="displayMethod" type="string" hint="Display method to render objects with"
required="true" ftLabel="Display Method" ftDefault="displayTeaserStandard" ftType="webskin"
ftprefix="displayTeaser" ftTypename="Safari" />

</cfcomponent>

The above code first sets the custom rule to extend the core rules type which means it will inherit the
following properties:

 ObjectId
 Label

The rules component also extends FourQ which means it inherits the same standard methods that the
types object does, eg createData, setData etc.

FarCry Developer Course Page 104

8.2 DEPLOY

Save the file and deploy the rule via the COAPI screen. Instead of using the “Type Classes” link, use the
“Rule Classes” link (the functionality is identical).

The rule is now deployed in the database and metadata saved to the application scope. Browse to the
“Safaris” page of the Solar Safaris website and then use the widget menu to view design mode to display
the page containers. Edit the container on the page to bring up the Container Management Screen listing
all the available rules. You should now see the new “Safari Listing Rule” displayed in the select box.

Once again thanks to the FarCry framework (and FormTools) we don’t need to create a form to handle
editing the DisplayMethod and Intro of our rule.

FarCry Developer Course Page 105

8.3 TEASER WEBSKIN

You will notice that there are no “Display Methods” listed in the update form. This is because we haven’t
created any teaser methods for the Safari custom type as yet. Go ahead and create a webskin called
displayTeaserStandard for the Safari object. Refreshing the Container Management Screen you should
now see your display method listed. Select this new display method and enter some intro text for your
listing.

FarCry Developer Course Page 106

Click the “Update” button to save the rule settings.

8.4 EXECUTE METHOD

If you now browse to your “Safaris” page in the Solar Safaris website you will see the following error:

“: No execute method specified”

We have the ability (from FormTools) to save rule information but we haven’t created the execute method
that will actually determine what objects are to be displayed and display them. Add the following code to
your safaris.cfc file:

<cffunction access="public" name="execute" output="false" returntype=”void”>
<cfargument name="objectID" required="Yes" type="uuid" default="">
<cfargument name="dsn" required="false" type="string" default="#application.dsn#">
<cfargument name="dbowner" required="false" type="string" default="#application.dbowner#">

<!--- set up vars --->
<cfset var stObj = getData(arguments.objectid)>
<cfset var qGetSafaris = ''>
<cfset var stInvoke = structNew()>

<!--- get safaris that haven't left yet and have status equal to current view mode --->
<cfquery datasource="#arguments.dsn#" name="qGetSafaris">

SELECT*
FROM #arguments.dbowner#safari
WHERE status IN ('#ListChangeDelims(request.mode.lValidStatus,"','",",")#')
AND departureDate > #now()#
ORDER BY departureDate

</cfquery>
<!--- check if intro has been entered --->
<cfif len(trim(stObj.intro)) AND qGetSafaris.recordCount>

<!--- output intro --->
<cfset arrayAppend(request.aInvocations,stObj.intro)>

</cfif>
<!--- loop over safaris --->
<cfloop query="qGetSafaris">

<!--- call display method for safari --->
<cfset stInvoke = structNew()>
<cfset stInvoke.objectID = qGetSafaris.objectID>
<cfset stInvoke.typename = application.stCoapi.safari.packagePath>
<cfset stInvoke.method = stObj.displayMethod>
<cfset arrayAppend(request.aInvocations,stInvoke)>

</cfloop>
</cffunction>

Viewing the “Safaris” page should now show the intro text and then list all your safari objects using the
new teaser webskin we created.

FarCry Developer Course Page 107

8.5 LAB

Go ahead and create a second custom rule that will display a random destination on the home page. You
will need to add a container to the home page webskin, create the rule, deploy it via the COAPI screen
and assign it to the home page. The end product should look something like this:

FarCry Developer Course Page 108

FarCry Developer Course Page 109

8.6 UNIT REVIEW

In this unit you have learnt the following:

 How to define a Custom Rule
 How to deploy a Custom Rule
 How to assign a Custom Rule to a container
 How to define an execute method

FarCry Developer Course Page 110

9 Advanced Topics
There are numerous advanced features of FarCry that we haven’t covered as yet and we won’t be able to
cover all of them in this course. We will however cover some of the more important and often-used
features including:

 Caching
 Security
 Extending Core Types
 Friendly URLs

9.1 CACHING

Caching is used to reduce the loads on both the ColdFusion and database servers. Anything can be
cached within your website, but it is a standard practice to cache things that are server intensive, things
like navigation and containers. Caching can be set to expire in a matter of seconds or can be set to last for
weeks, depending on how often your content is updated and the load on your server.

FarCry makes caching a very simple task by providing a cache custom tag. You simply wrap the code you
want to be cached with the custom tag, set a few attributes and the next time someone views that page
the cache is generated. FarCry also provides caching administration by allowing you to view current
caches, flush (delete) caches, clean expired caches and auto cache the entire website. You are also able
to select a view mode called “Show Latest” that flushes all caches on the page currently being viewed.

9.1.1 Cache custom tag
In the Solar Safaris website we will start by caching the primary navigation. To do this open the
C:\farcry\projects\solar_safaris\webskin\includes\header.cfm file.

Add the following import line to the top of the page.

<!--- import webskin tag library --->
<cfimport taglib="/farcry/core/tags/webskin" prefix="skin">

Then replace the primary navigation block with the below code. The only change is that it is now wrapped
with <skin:cache> tags.

<!--- cache the primary nav for 7 days --->
<skin:cache cacheBlockName="Navigation" cacheName="_PrimaryNav" days="7">

<!--- set up where clause filter --->
<cfset navFilter=arrayNew(1)>
<cfset navfilter[1]="status IN (#listQualify(request.mode.lvalidstatus, "'")#)">
<!--- get navigation nodes --->
<cfset qNav = request.factory.oTree.getDescendants(objectid=application.navid.home, depth=1,

afilter=navFilter,bIncludeSelf=1)>
<!--- loop over navigation and display each node --->
<cfloop query="qNav">

#qNav.objectname#

<!--- check if object is not the last returned object --->
<cfif qNav.currentRow neq qNav.recordCount> | </cfif>

</cfloop>
</skin:cache>

The <cache> tag takes the following attributes:

 cacheBlockName (name for a group of related caches)

FarCry Developer Course Page 111

 cacheName (name for this individual cache)
 days (number of days to cache for)
 hours (number of hours to cache for)
 minutes (number of minutes to cache for)
 seconds (number of seconds to cache for)

9.1.2 Show Latest
If you now add a new page under the home navigation node called “Travel Agents” and then refresh the
home page you will that it doesn’t appear in the menu. That is because the menu is cached. To clear the
cache and make the newly added page appear use the widget menu and select the “View Latest” option.

FarCry Developer Course Page 112

To cache the navigation now again including the new “Travel Agents” page, select “Show Cached” from
the widget menu.

9.1.3 Lab
Go ahead and cache the footer navigation menu and the containers on both the “Destinations” and
“Safaris” pages. As the “Safaris” page has date based information you probably only want to cache this
page for a maximum of 1 day. Your “Cache Summary” page under the “Admin” table now may display as:

9.1.4 Advanced Webskin Caching
It is possible to cache an entire webskin, not just a small content section. FarCry can cache the webskin
whether it is an entire page (including header and footer), or if it is just a teaser.

Do take advantage of webskin caching you can add the following to your cfcomponent tag for the type you
want to cache.

<cfcomponent name=””
lObjectBrokerWebskins="displayPageHome:15,displayPageStandard,displayTeaser,displayPageLandin
g" objectBrokerWebskinTimeOut="60">

objectBrokerWebskinTimeOut sets the default timeout (in minutes) for you type. You can however override
the timeout for each webskin by passing a webskin:timeout pair.

One thing you need to remember with webskin caching is that when you make a change and “Save” a
content object which uses that webskin, the cache will be cleared. This is to assist content editors in
making sure the most up to date content is displayed.

Be careful however with any dynamic content which has been added to your page via a container. All
content is cached in the webskin but if container data is modified it might not be cleared from the cache.

9.2 SECURITY

Securing content on a website is a highly request feature. FarCry provides this functionality by assigning
view permissions to each navigation node in the hierarchy. If the value is not set for a particular node, it
inherits the value from its parent. By default all Policy Groups have view permission for the entire site.

9.2.1 Set Anonymous View Permission
To secure a section of the Solar Safaris site, such as the “Travel Agents” page so that only registered
travel agents could view the content we first need to turn off anonymous view access to the “Travel
Agents” page.

 Login to FarCry
 Click on the “Site Tab”
 Right-click on the “Travel Agents” node

FarCry Developer Course Page 113

 Select the “Permissions” link

 Select “Anonymous” from the “Policy Group” drop down
 Set the “View” permission to “No”
 Click the “Update” button

FarCry Developer Course Page 114

If you now log out of FarCry and try and view the “Travel Agents” page you will be prompted for a
username and password. Using the default “farcry/farcry” combination will allow you view the page as the
SysAdmin view permission is still set to “Yes”.

9.2.2 Create New User
Let’s now create a new user and make them part of the “member” policy group and check that they can log
in and see the “Travel Agents” page.

 Login to FarCry
 Click on the “Security” tab
 Click the “Create User” link
 Add a new user with a login of “ABCTravel” and password of “abc”
 Click the “Create User” button
 The user is not a member of any Policy Groups at this stage so click the “Manage Groups” button
 Make the user a member of the “Member” group and click the “Update” button.

FarCry Developer Course Page 115

9.2.3 View the page
Now that we have a new user, let’s now check we can log in and view the secured page as planned.

 Go back to the “Site” tab and ensure that the “Member” policy group has view permissions on the
“Travel Agents” page.

 Log out of FarCry
 Browse to the “Travel Agents” page.
 Login using “ABCTravel/abc”
 Try browsing to the FarCry administration screen (you should not be able to do this a member. It

will log you out and prompt you for a username/password)

9.3 EXTENDING CORE TYPES

All core FarCry types and rules can be extended to allow for new properties and methods, and changes to
existing methods. For the Solar Safaris website we want to display some trade event information, where
Travel Agents would sign up to exhibitions/conferences regarding Solar Safaris. Solar Safaris would like to
charge for these events. The core dmEvent object has all the properties we require except for a cost field.
What we need to do is extend the dmEvent type, add a new property, deploy this new property and modify
the edit handler to allow the new property information to be entered.

9.3.1 Type definition
The first thing we need to do is define the dmEvent type as an extended type. This means the inheritance
chain will now be:

Solar_Safaris dmEvent -> Core dmEvent -> Core types -> FourQ

Create a new file called dmEvent.cfc and save it in the C:\farcry\projects\solar_safaris\packages\system
directory. Add the following code:

<cfcomponent
extends="farcry.core.packages.types.dmEvent"
displayname="Events"
hint="Dynamic events data"
bSchedule="1">

<cfproperty ftseq="6" ftFieldset="Event Overview" ftWizardStep="General Details" name="Cost"
type="string" hint="Display method to render." required="false" ftType="string" ftLabel="Cost" />

</cfcomponent>

9.3.2 COAPI
Login to FarCry and deploy the new “cost” property via the Types COAPI screen.

Now login in to FarCry and create a new Event object under the “Content” tab. You will see our new “Cost”
field in the first step of the Wizard.

FarCry Developer Course Page 116

FarCry Developer Course Page 117

9.3.3 Webskin
Go ahead and create two webskin files for the dmEvent object, on called displayPageStandard and the
other called diplayTeaserStandard. Then go and add the “Event Listing Rule” to the container on the
“Travel Agents” page. The final result should look something like this:

You can easily extend any other core type or rule and add new methods where needed. One common
extension is to add new properties to the dmProfile type to capture member details.

FarCry Developer Course Page 118

9.4 FRIENDLY URLS

The Friendly URL plugin was created by Stephen “Spike” Milligan and has been integrated into FarCry to
allow links to be entered using the titles of the navigation pages instead of passing through the objectid.
Eg:

http://localhost/go/destinations/venus

instead of

http://localhost/solar/index.cfm?objectid=7F2B7A9F-20E0-64AB-AFDCEC35ED29A43C

This has a number of benefits both to the user and site administrator:

 Better presentation, the url looks nicer
 User friendly, the user can tell where they are in the site from the url
 Search engine friendly, search engines will index deeper into your site if your url doesn’t contain

url parameters

To incorporate friendlyURLs into your site you need to download the plugin (follow the instructions at
http://docs.farcrycms.org:8080/confluence/display/FCDEV30/Friendly+URL+Configuration) and then set
the plugins configuration file to use friendlyURLs.

FarCry Developer Course Page 119

Once you update the config you will see two new menu items appear under the “Admin” tab.

The “Rebuild Friendly URLs” section provides you with all core content types to build friendly URLs for. If
you choose dmNavigation, FarCry goes through the site tree from the Home node down and creates a
friendly URL entry for each nav node. Note that depending on the size of your project (i.e. the amount of
navigation items) this may take a while to process. Therefore care should be taken particularly when
running on a production system.

To actually generate the links throughout your site as friendlyURLs you need to use the <buildLink>
custom tag instead of hard coding <href> tags. You simply pass the objectid to the buildLink tag, it checks
to see if friendlyURLs are installed and configured and then checks to see if the object passed in has a
friendlyURL entry. If it does the friendlyURL is returned, if not, the standard objectid= url is returned.

Modify your header.cfm file to incorporate friendlyURLs. Make sure you import the webskin tag library,
then replace the line that generates the <a href> tag with the following:

<skin:buildLink objectid="#qNav.objectid#">#qNav.objectName#</skin:buildLink>

If you have installed, configured and set friendlyURLs for your site the primary navigation will now show as
friendly urls. If you haven’t configured friendly URLs then the links will show as they did before, but as
soon as you install and configure the plugin the links will change, without having to update the code. It is
best practice to use the <buildLink> custom tag to generate navigation links even if you don’t have
friendlyURLs installed because it saves you a lot of code re-write if you do eventually install them.

FarCry Developer Course Page 120

10 ADDITIONAL ONLINE MATERIAL

10.1 FARCRY CMS OPEN SOURCE COMMUNITY

The official website of the FarCry CMS development community.
http://www.farcrycore.org/

10.2 PUBLIC FORUMS

10.2.1 FARCRY-DEV (PUBLIC)
farcry-dev@googlegroups.com
Aimed at managing support for FarCry open source developers. Anyone making enquiries about modifying
or extending or deploying the code base should be referred to this list.

To join the mailing list, go to: http://groups.google.com/group/farcry-dev/about
Old web based archive: http://www.mail-archive.com/farcry-dev@lists.daemon.com.au/
Alternative web based interface: http://www.nabble.com/FarCry-f621.html

10.2.2 FARCRY-USER (PUBLIC)
farcry-user@googlegroups.com
Aimed at managing support for FarCry open source users. Anyone making enquiries about adding, editing
or managing content should be referred to this list.

To join the mailing list, go to: http://groups.google.com/group/farcry-user/about
Alternative web based interface: http://www.nabble.com/FarCry-f621.html

10.2.3 FARCRY-BETA (PUBLIC)
farcry-beta@googlegroups.com
The beta list is focused at providing a discussion environment and ad hoc support forum for developers
getting to grips with and developing changes for the next generation of FarCry CMS.

To join the mailing list, go to: http://groups.google.com/group/farcry-beta/about

10.3 BUG TRACKING

Daemon manages and maintains an open and comprehensive issue tracking system for active releases of
the FarCry CMS platform. This includes roadmaps for future development, and schedules for
maintenance releases and hot fixes.

If you need to report an issue, check on the status of an issue, request a new feature or even submit a
code change for review you'll need to visit
http://bugs.farcrycms.org/

10.4 FARCRY WIKI

FarCry WIKI is a community effort to generate much needed user and developer documentation for this
fantastic platform. Sign-up and help out — even if its only to comment and ask questions!
http://docs.farcrycms.org/

FarCry Developer Course Page 121

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/2.5/au/ or send a letter to

Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

This work is copyrighted Daemon Pty Limited 2007, http://www.daemon.com.au/

FarCry Developer Course Page 122

